Carleman Formula for Matrix Ball of the Third Type

  • G. KhudayberganovEmail author
  • U. S. Rakhmonov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 264)


In this paper we consider the problem of restoring the values of a holomorphic function in a matrix ball of the third type with respect to values on a part of its boundary.


Carlemen formula Matrix ball of the third type Poisson kernel Cauchy formula Lebesgue measure Cauchy-Szego kernel 


  1. 1.
    Khudayberganov, G., Khidirov, B.B., Rakhmonov, U.S.: Automorphisms of matrix balls. Vestnik NUUz 4, 205–209 (2010). (in Russian)Google Scholar
  2. 2.
    Hua, L.-K.: Harmonic analysis of functions of several complex variables, in classical domains. Moscow, IL (1959) (in Russian)Google Scholar
  3. 3.
    Lancaster, P.: The Theory of Matrices. Nauka, Moscow (1982). (in Russian)zbMATHGoogle Scholar
  4. 4.
    Khudayberganov, G.: The Carleman formula for functions of matrices. Sib. Math. J. 28(1), 207–208 (1988). (in Russian)Google Scholar
  5. 5.
    Rakhmonov, U.S.: Poisson kernel for matrix ball of third type. Uzbek Math. J. 3, 123–125 (2012). (in Russian)MathSciNetGoogle Scholar
  6. 6.
    Vladimirov, V.S., Sergeev, A.G.: Complex analysis in the future tube. Encycl. Math. Sci. Fundam. Dir. Itogi nauki i tekhniki 8, 191–266 (1985). (in Russian)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Khudayberganov, G., Kytmanov, A.M., Shaimkulov B.A.: Analysis in matrix domains. Monograph. Krasnoyarsk, Siberian Federal University. 296 p. (in Russian) (2017)Google Scholar
  8. 8.
    Aizenberg, L.A.: Carleman Formulas in complex analysis. Novosibirsk, Science. 248 p. (in Russian) (1990)Google Scholar
  9. 9.
    Koranyi, A.: The Poisson integral for generalized half-planes and bounded symmetric domains. Ann. Math. 82(2), 332–350 (1965)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Khudayberganov, G., Rakhmonov, U.S.: Berghman and Cauchy–Szego kernels for matrix ball of third type. Uzbek Math. J. 2, 152–157 (2012). (in Russian)Google Scholar
  11. 11.
    Kytmanov, A.M., Nikitina, T.N.: Analogs of Carleman’s formula for classical domains. Math. Notes 45(3), 87–93 (1989)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National University of Uzbekistan named after M. UlugbekTashkentUzbekistan
  2. 2.Tashkent State Technical University named after I. KarimovTashkentUzbekistan

Personalised recommendations