Advertisement

Integration of the Toda-Type Chain with a Special Self-consistent Source

  • B. A. Babajanov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 264)

Abstract

In this paper, it is shown that the solutions of the Toda-type chain with a special self-consistent source can be found by the inverse scattering method for the discrete Sturm–Liuville operator with moving eigenvalues.

Keywords

Toda-type chain Self-consistent source Inverse scattering method Discrete Sturm-Liouville operator One-soliton solution 

Notes

Acknowledgements

This work was supported by the International Erasmus+ Program KA106-2, Keele University, UK.

References

  1. 1.
    Toda, M.: One-dimensional dual transformation. J. Phys. Soc. Jpn. 22, 431–436 (1967)CrossRefGoogle Scholar
  2. 2.
    Toda, M.: Wave propagation in anharmonic lattice. J. Phys. Soc. Jpn. 23, 501–506 (1967)CrossRefGoogle Scholar
  3. 3.
    Flaschka, H.: Toda lattice. I. Phys. Rev. B9, 1924–1925 (1974)CrossRefGoogle Scholar
  4. 4.
    Manakov, S.V.: Complete integrability and stochastization of discrete dynamical systems. Zh. Eksp. Teor. Fiz. 67, 543–555 (1974)MathSciNetGoogle Scholar
  5. 5.
    Khanmamedov, AgKh: The rapidly decreasing solution of the initial-boundary value problem for the Toda lattice. Ukr. Math. J. 57, 1144–1152 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mel’nikov, V.K.: A direct method for deriving a multisoliton solution for the problem of interaction of waves on the x, y plane. Commun. Math. Phys. 112, 639–52 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mel’nikov, V.K.: Integration method of the Korteweg-de Vries equation with a self-consistent source. Phys. Lett. A 133, 493–6 (1988)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mel’nikov, V.K.: Integration of the nonlinear Schrodinger equation with a self-consistent source. Commun. Math. Phys. 137, 359–81 (1991)CrossRefGoogle Scholar
  9. 9.
    Mel‘nikov, V.K.: Integration of the Korteweg-de Vries equation with a source. Inverse Probl. 6, 233–46 (1990)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Leon, J., Latifi, A.: Solution of an initial-boundary value problem for coupled nonlinear waves. J. Phys. A Math. Gen. 23, 1385–403 (1990)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Claude, C., Latifi, A., Leon, J.: Nonliear resonant scattering and plasma instability: an integrable model. J. Math. Phys. 32, 3321–3330 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Shchesnovich, V.S., Doktorov, E.V.: Modified Manakov system with self-consistent source. Phys. Lett. A 213 23–31 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cabada, A., Urazboev, G.U.: Integration of the Toda lattice with an integral-type source. Inverse Probl. 26, 085004(12pp) (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lin, R.L., Zeng, Y.B., Ma, W.X.: Solving the KdV hierarchy with self-consistent sources by inverse scattering method. Phys. A 291, 287–98 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zeng, Y.B., Ma, W.X., Shao, Y.J.: Two binary Darboux transformations for the KdV hierarchy with self-consistent sources. J. Math. Phys. 42, 2113–28 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zeng, Y.B., Shao, Y.J., Ma, W.X.: Integral-type Darboux transformations for the mKdV hierarchy with self-consistent sources. Commun. Theor. Phys. (Beijing) 38, 641–8 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zeng, Y.B., Shao, Y.J., Xue, W.M.: Negaton and positon solutions of the soliton equation with self-consistent sources. J. Phys. A Math. Gen. 36, 5035–43 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Xiao, T., Zeng, Y.B.: Generalized Darboux transformations for the KP equation with self-consistent sources. J. Phys. A Math. Gen. 37, 7143–62 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Matsuno, Y.: Bilinear Backlund transformation for the KdV equation with a source. J. Phys. A Math. Gen. 24, L273–7 (1991)CrossRefGoogle Scholar
  20. 20.
    Deng, S.F., Chen, D.Y., Zhang, D.J.: The multisoliton solutions of the KP equation with self-consistent sources. J. Phys. Soc. Jpn. 72, 2184–92 (2003)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhang, D.J., Chen, D.Y.: The N-soliton solutions of the sine-Gordon equation with self-consistent sources. Phys. A 321, 467–81 (2003)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Urazboev, G.U.: Toda lattice with a special self-consistent source. Theor. Math. Phys. 154, 305–315 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    David, C., Niels, G.-J., Bishop, A.R., Findikoglu, A.T., Reago, D.: A perturbed Toda lattice model for low loss nonlinear transmission lines. Phys. D Nonlinear Phenom. 123, 291–300 (1998)CrossRefGoogle Scholar
  24. 24.
    Garnier, J., Kh, Abdullaev F.: Soliton dynamics in a random Toda chain Phys. Rev. E 67, 026609–1 (2003)Google Scholar
  25. 25.
    Case, K., Kac, M.: A discrete version of the inverse scattering problem. J. Math. Phys. 14, 594–603 (1973)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Urgench State UniversiyUrgenchUzbekistan

Personalised recommendations