Class R of Gonchar in \(\mathbf C^n\)

  • Azimbay Sadullaev
  • Zafar IbragimovEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 264)


The class R in the complex space \({\mathbf C}^{n} \) was introduced and investigated by A. A. Gonchar. This class and its properties have found a number of applications in approximation theory, in problems of analytic continuations of functions, in descriptions of the structures of singular sets of analytic functions, and in pluripotential theory. In this paper we study further properties of this class.


Rational approximation Pluripolar set Fine-analytic function Fine topolgy Plurisubharmonic function 



I would like to express my warm thanks to the referee of this paper for numerous corrections, in particular for the wonderful Remark 1.


  1. 1.
    Bedford, E., Taylor, B.A.: Fine topology, Šilov boundary and \((dd^c)^n\). J. Funct. Anal. 72(2), 225–251 (1987)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brelot, M.: On Topologies and Boundaries in Potential Theory. Lecture Notes in Mathematics, vol. 175. Springer, Berlin (1971)zbMATHGoogle Scholar
  3. 3.
    Doob, J.L.: Classical Potential Theory and its Probabilistic Counterpart. Springer, Berlin (1984)CrossRefGoogle Scholar
  4. 4.
    Edigarian, A., Wiegerinck, J.: The pluripolar hull of the graph of a holomorphic function with polar singularities. Indiana Univ. Math. J. 52, 1663–1680 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Edigarian, A., Wiegerinck, J.: Determination of the pluripolar hull of graphs of certain holomorphic functions. Ann. Inst. Fourier (Genoble) 54, 2085–2104 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Edigarian, A., El Marzguioui, S., Wiegerinck, J.: The image of a finely holomorphic map is pluripolar. Ann. Pol. Math. 97, 137–149 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Edlund, T.: Complete pluripolar curves and graphs. Ann. Pol. Math. 84, 75–86 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Edlund, T., Jöricke, B.: The pluripolar hull of a graph and fine analytic continuation. Ark. Mat. 44, 39–60 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    El Kadiri, M., Fuglede, B., Wiegerinck, J.: Plurisubharmonic and holomorphic functions relative to the plurifine topology. J. Math. Anal. Appl. 381(2), 706–723 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fuglede, B.: Fine topology and finely holomorphic functions. In: Proceedings of the 18th Scandinavian Congress of Mathematicians Aarhus 1980, Birkhäuser, pp. 22–38 (1981)Google Scholar
  11. 11.
    Fuglede, B.: Finely holomorphic functions. A survey. Rev. Roum. Math. Pures Appl. 33, 283–295 (1988)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gonchar, A.A.: A local condition for single-valuedness of analytic functions. Math. Sbornic 89(131), 148–164 (1972). English Transl. Math. USSR Sbornic 18 (1972)MathSciNetGoogle Scholar
  13. 13.
    Gonchar, A.A.: On the convergence of Pade approximants. Math. Sbornic 92(134), 152–164 (1973). English Transl. Math. USSR Sbornic 21 (1973)Google Scholar
  14. 14.
    Gonchar, A.A.: A local condition for single-valuedness of analytic functions of several variables. Math. Sbornic 93(135), 296–313 (1974). English Transl. Math. USSR Sbornic 22 (1974)MathSciNetGoogle Scholar
  15. 15.
    Imomkulov, S.A.: On holomorphic continuation of functions defined on a pencil of boundary of complex lines. Izv. RAN. Ser. Mat. 69(2), 125–144 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Landkof, N.S.: Foundations of Modern Potential theory, Nauka, Moscow, 1966, English Transl. Springer, Berlin (1972)Google Scholar
  17. 17.
    Levenberg, N., Martin, G., Poletsky, E.A.: Analytic disks and pluripolar sets. Indiana Univ. Math. J. 41, 515–532 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Levenberg, N., Poletsky, E.A.: Pluripolar hulls. Mich. Math. J. 46, 151–162 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Levin, B.Y.: Distribution of zeros of entire functions, GITTL, Moscow, 1956, English Transl. American Mathematical Society, Providence (1964)Google Scholar
  20. 20.
    El Marzguioui, S., Wiegerinck, J.: Continuity properties of finely plurisubharmonic functions. Indiana Univ. Math J. 59(5), 1793–1800 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sadullaev, A.S.: Plurisubharmonic measures and capacities on complex manifolds. Russ. Math. Surv. 36(4), 61–119 (1981)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sadullaev, A.S.: Rational approximation and pluripolar sets. Math. USSR Sbornic 47(1), 91–113 (1984)CrossRefGoogle Scholar
  23. 23.
    Sadullaev, A.S.: A criterion for rapid rational approximation in \(\mathbf{C}^n\). Math. USSR Sbornic 53(1), 271–281 (1986)CrossRefGoogle Scholar
  24. 24.
    Sadullaev, A.S.: Plurisubharmonic functions. Several Complex Variables II. Encyclopaedia of Mathematical Sciences, pp. 59–106. Springer, Berlin (1994)CrossRefGoogle Scholar
  25. 25.
    Sadullaev, A.S.: Pluripotential Theory: Applications. Palmarium Akademic Publishing, Germany (2012). (in Russian)Google Scholar
  26. 26.
    Sadullaev, A.S., Chirka, E.M.: On continuation of functions with polar singularities. Math. USSR Sbornic 60(2), 377–384 (1988)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sadullaev, A.S., Imomkulov, S.A.: Continuation of holomorphic and pluriharmonic functions with thin singularities on parallel sections. Proc. Steklov Inst. Math. 253(2), 144–159 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sadullaev, A.S., Ibragimov, Z.S.: Class \(R\) of Gonchar and fine-analytic functions. Russ. Math. Surv. (accepted)Google Scholar
  29. 29.
    Wiegerinck, J.: Plurifine potential theory. Ann. Pol. Math. 106, 275–292 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsNational University of UzbekistanTashkentUzbekistan
  2. 2.Department of MathematicsUrgench State UniversityKhorezm, UrgenchUzbekistan

Personalised recommendations