On Extensions of Some Classes of Algebras

  • Isamiddin RakhimovEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 264)


The paper consists of three parts. In the first part we discuss on extensions of Lie algebras and their importance in Physics. Then we deal with the extensions of some classes of algebras with one binary operation. The third part is devoted to the study of extensions of two classes of algebras, possessing two algebraic operations, called dialgebras. In all the cases we propose 2-cocycles and respective extensions. The motivation to study the extensions is to use them further for the classification problem of the classes algebras considered in low dimensional cases.


Lie algebra Associative algebra Pre-Lie algebra Leibniz algebra Zinbiel algebra Dialgebra 



The author would like to thank the referee for the comments made. The research was supported by FRGS Grant 01-01-16-1869FR, MOHE, Malaysia.


  1. 1.
    Aguiar, M.: Pre-poisson algebras. Lett. Math. Phys. 54(4), 263–277 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Basri, W., Rakhimov, I.S., Rikhsiboev, I.M.: On nilpotent diassociative algebras. J. Gen. Lie Theor. Appl. 9(1), 1 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity. Pacific. J. Math. 10, 731–742 (1960)MathSciNetCrossRefGoogle Scholar
  4. 4.
    De Graaf, W.A.: Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. J. Algebra 309(2), 640–653 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    De Graaf, W.A.: Classification of nilpotent associative algebras of small dimension. Int. J. Algebr. Comput. 28(01), 133–161 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dzhumadildaev, A.S., Tulenbaev, K.M.: Nilpotency of Zinbiel algebras. J. Dyn. Control Syst. 11(2), 195–213 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gong, M.-P.: Classification of nilpotent Lie algebras of dimension 7 (over algebraic closed fields and \(\mathbb{R}\)). Ph.D. Thesis, Waterloo, Ontario, Canada (1992)Google Scholar
  8. 8.
    Hegazi, A., Abdelwahab, H.: The classification of \(n\)-dimensional non-associative Jordan algebras with \((n-3)\)-dimensional annihilator. Commun. Algebra 46(2), 629–643 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hegazi, A., Abdelwahab, H., Calderon Martin, A.: The classification of \(n\)-dimensional non-Lie Malcev algebras with \((n-4)\)- dimensional annihilator. Linear Algebra Appl. 505, 32–56 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Koszul, J.-L.: Domaines bornes homogenes et orbites de groupes de transformation afflnes. Bull. Soc. Math. France 89, 515–533 (1961)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Loday, J.-L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. L’Ens. Math. 39, 269–293 (1993). (in French)zbMATHGoogle Scholar
  12. 12.
    Loday, J.-L.: Overview on Leibniz algebras, dialgebras and their homology. Fields Inst. Commun. 17, 91–102 (1997)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Loday, J.-L., Frabetti, A., Chapoton, F., Goichot, F.: Dialgebras and Related Operads. Lecture Notes in Math., 1763. Springer, Berlin (2001)Google Scholar
  14. 14.
    Rakhimov, I.S.: On central extensions of associative dialgebras. J. Phys. Conf. Ser. 697(1), 012009 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rakhimov, I.S., Langari, S.J.: A cohomological approach for classifying Nilpotent Leibniz algebras. Int. J. Algebra 4(4), 153–163 (2010)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Rakhimov, I.S., Hassan, M.A.: On one-dimensional central extension of a filiform Lie algebra. Bull. Aust. Math. Soc. 84, 205–224 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rakhimov, I.S., Hassan, M.A.: On isomorphism criteria for Leibniz central extensions of a linear deformation of \(\mu _n\). Int. J. Algebra Comput. 21(5), 715–729 (2011)CrossRefGoogle Scholar
  18. 18.
    Rota, G.: Baxter algebras and combinatorial identities I-II. Bull. Amer. Math. Soc. 75(2), 325–334 (1969)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Skjelbred, T., Sund, T.: Sur la classification des algèbres de Lie nilpotentes, C. R. Acad. Sci. Paris Sér. A-B 286(5), A241–A242 (1978)zbMATHGoogle Scholar
  20. 20.
    Vinberg, E.B.: Convex homogeneous cones. Transl. Moscow Math. Soc. 12, 340–403 (1963)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute for Mathematical Research (INSPEM)Universiti Putra MalaysiaSerdangMalaysia

Personalised recommendations