Applied Mathematics and Scientific Computing pp 613-621 | Cite as
Power Domination Parameters in Honeycomb-Like Networks
Conference paper
First Online:
Abstract
A set S of vertices in a graph G is called a dominating set of G if every vertex in V (G)∖S is adjacent to some vertex in S. A set S is said to be a power dominating set of G if every vertex in the system is monitored by the set S following a set of rules for power system monitoring. The power domination number of G is the minimum cardinality of a power dominating set of G. In this paper, we obtain the power domination number for triangular graphs, pyrene networks, circum-pyrene networks, circum-trizene networks, generalized honeycomb torus and honeycomb rectangular torus.
References
- 1.Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Power domination in graphs applied to electrical power networks. SIAM Journal on Discrete Mathematics, 15(4), 519–529 (2002).MathSciNetCrossRefGoogle Scholar
- 2.Ferrero, D., Hogben, L., Kenter, F.H.J., Young, M.: Note on Power Propagation Time and Lower Bounds for the Power Domination Number. arXiv:1512.06413v2 [math.CO] 17 (2016).Google Scholar
- 3.Xu,G.J., Kang, L.Y., Shan, E.F., Zhao,M.: Power domination in block graphs. Theoretical Computer Science, 359 299–305 (2006).MathSciNetCrossRefGoogle Scholar
- 4.Dorbec, P., Mollard, M., Klavzar, S., Spacapan, S. :Power domination in product graphs. SIAM Journal on Discrete Mathematics, 22(2) 554–567 (2008).Google Scholar
- 5.Ferrero, D., Varghese, S., Vijayakumar,A.: Power domination in honeycomb networks, Journal of Discrete Mathematical Science, 14(6) 521–529 (2011).MathSciNetzbMATHGoogle Scholar
- 6.Quadras, J., Balasubramanian, K., Arputha Christy, K.: Analytical expressions for Wiener indices of n-circumscribed peri-condensed benzenoid graphs. Journal of Mathematical Chemistry (2016), https://doi.org/10.1007/s10910-016-0596-9.MathSciNetCrossRefGoogle Scholar
- 7.Hsu, L.H. , Lin, C.K.: Graph theory and interconnection networks. Taylor and Francies Group, New York, (2009).zbMATHGoogle Scholar
- 8.Yang,X., Megson,G. M., Tang,Y., Evans,D. J.: Diameter of Parallelogramic Honeycomb Torus. An International Journal of Computer and Mathematics with Applications, 50 1477–1486 (2005).MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019