Advertisement

Wiener Index of Hypertree

  • L. Nirmala Rani
  • K. Jennifer Rajkumari
  • S. RoyEmail author
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

Binary trees are enormously used in data structure as they can be easily stored, manipulated, and retrieved. The most straightforward and extensive applications of binary trees are in the study of computer searching and sorting methods, binary identification problems, and variable binary codes. Many complex networks are easily classified and analyzed by the usage of binary tree representations. A binary tree is defined as a tree in which there is exactly one vertex of degree two and each of the remaining vertices is of degree one or three. Every binary tree is a rooted tree with odd number of vertices. A special type of binary tree known as hypertree is an interconnection topology which combines the easy expansibility of tree structures with the compactness of the hypercube. In this paper we find the Wiener index of hypertree.

References

  1. 1.
    Saad, Y., Schultz, M. H.: Topological properties of hypercubes. IEEE Trans. Comput. 37(7), 867–872 (1988).CrossRefGoogle Scholar
  2. 2.
    Ivanciuc, O., Ivanciuc, T., Balaban, A. T.: Design of topological indices. Part 10. Parameters based on electronegativity and covalent radius for the computation of molecular graph descriptors for heteroatom-containing molecules. J. Chem. Inf. Comput. Sci. 38, 395–401 (1998)CrossRefGoogle Scholar
  3. 3.
    Luiu, B., Nikoli, S., Trinajsti, N.: Distance-Related Molecular Descriptors. Internet Electronic Journal of Molecular Design. 7, 195–206 (2008).Google Scholar
  4. 4.
    Balaban, A. T.: Topological indices based on topological distances in molecular graphs. Pure Appl. Chem. 55, 199–206 (1983).CrossRefGoogle Scholar
  5. 5.
    Wiener, M.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947).CrossRefGoogle Scholar
  6. 6.
    Gutman, I., Yeh, Y. N., Lee, S. L., Luo,Y. L.: Some recent results in the theory of the Wiener number. Indian J. Chem. 32A, 651–661 (1993).Google Scholar
  7. 7.
    A.Graovac, T. Pisanski, On the Wiener index of a graph. J. Math. Chem. 8, 53–62 (1991).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gutman, I., Furtula, B., Petrovi, M.: Terminal Wiener index. J. Math. Chem. 46, 522–531 (2009).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dobrynin, A. A., Entringer, R., Gutman, I.: Wiener index of trees: theory and applications. Acta Appl. Math. 66, 211–249 (2011).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Randi, M.: On generalization of Wiener index for cyclic structures. Acta Chim. Slov. 49, 483–496 (2002).Google Scholar
  11. 11.
    Khadikar, P. V., Deshpande, N. V., Kale, P. P., Dobrynin, A. A., Gutman, I., DĆmĆtor, G.: The Szeged index and an analogy with the Wiener index. J. Chem. Inf. Comput. Sci. 35, 547–550 (1995).CrossRefGoogle Scholar
  12. 12.
    Mohar, B., Pisanski, T.: How to compute the Weiner index of a Graph. J. Math. Chem. 2, 267–277 (1988).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhang, X. D., Xiang, Q.-Y., Xu, L.-Q., Pan, R.-Y. The Wiener index of trees with given degree sequences. Math. Comput. Chem. 60, 623–644 (2008).MathSciNetzbMATHGoogle Scholar
  14. 14.
    Opatrn, J., Sotteau, D.: Embeddings of complete binary trees into grids and extended grids with total vertex-congestion 1. Discrete Appl. Math. 98, 237–254 (2000).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rajasingh, I., Quadras, J., Manuel, P., William, A.: Embedding of cycles and wheels into arbitrary trees. Networks. 44(3),173–178 (2004).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lim, H-S., Park, J-H., Chwa, K-Y.: Embedding trees in recursive circulants, Discrete applied Mathematics, 69(1–2),83–89 (1996).MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rajasingh, I., Manuel, P., Rajan, B., Arockiaraj, M.: Wirelength of hypercubes into certain trees. Discrete Applied Mathematics. 1601(18), 2778–2786 (2012).MathSciNetCrossRefGoogle Scholar
  18. 18.
    Goodman, J.R., Sequin, C.H.: A multiprocessor interconnection topology. IEEE Transactions on Computers. 30(12), 923–933 (1981).CrossRefGoogle Scholar
  19. 19.
    Papa, D. A., Markov, I. L.: Hypergraph Partitioning and Clustering: In Approximation Algorithms and Metaheuristics. CRC Press, (2007).Google Scholar
  20. 20.
    Heuvel, J. V. D., Johnson, M.: Transversals of subtree hypergraphs and the source location problem in digraphs. Networks, 51(2), 113–119 (2008).MathSciNetCrossRefGoogle Scholar
  21. 21.
    Akram, M., Dudek, W. A.: Intuitionistic fuzzy hypergraphs with applications. Information Sciences. 218, 182–193 (2013).MathSciNetCrossRefGoogle Scholar
  22. 22.
    Brandstadt, A., Chepoi, V. D., Dragan, F. F.: The algorithmic use of hypertree structure and maximum neighbourhood orderings, Discrete Applied Mathematics. 82, 43–77 (1998).MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sundara Rajan, R., Jeyagopal, R., Rajasingh, I., Rajalaxmi, T. M., Parthiban, N.: Combinatorial properties of Root-fault hypertree. Procedia Computer Science. 57, 1096–1103 (2015).CrossRefGoogle Scholar
  24. 24.
    Manuel, P., Rajasingh, I., Rajan, B., Sundara Rajan, R.: A New Approach to Compute Wiener Index. Journal of Computational and Theoretical Nanoscience. 10, 1–7 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • L. Nirmala Rani
    • 1
  • K. Jennifer Rajkumari
    • 2
  • S. Roy
    • 3
    Email author
  1. 1.Anandarayan KottaiDindigulIndia
  2. 2.IEEEElectrical EngineeringStanford UniversityUSA
  3. 3.Department of MathematicsVellore Institute of TechnologyVelloreIndia

Personalised recommendations