Advertisement

Secondary Metabolites of Endophytic Actinomycetes: Isolation, Synthesis, Biosynthesis, and Biological Activities

  • Darlon Irineu Bernardi
  • Fernanda Oliveira das Chagas
  • Afif Felix Monteiro
  • Gabriel Franco dos Santos
  • Roberto Gomes de Souza BerlinckEmail author
Chapter
Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM, volume 108)

Abstract

Endophytic Actinobacteria are a microbial group that is still poorly investigated. Their association with plants constitutes a unique trait conferring specific biological and chemical features to endophytic Actinobacteria. This contribution discusses aspects of endophytic actinobacterial biology and chemistry comprehensively, including the biosynthesis and total synthesis of secondary metabolites produced in culture. It also presents perspectives for the future of microbial bioactive natural products discovery, with emphasis on the secondary metabolism of endophytic Actinobacteria.

Keywords

Endophytic actinobacteria Biosynthesis Polyketide total synthesis Alkaloid total synthesis 

Notes

Acknowledgments

The authors thank Professor Heinz Falk (Johannes Kepler Universität Linz) for many suggestions that improved the manuscript. Financial support was provided by Fundação de Amparo à Pesquisa do Estado de São Paulo to RGSB (2013/50228-8), as well as a Ph.D. scholarship awarded to DIB (2016/21341-9). The Brazilian funding agency Conselho Nacional de Desenvolvimento Científico e Tecnológico is also gratefully acknowledged for postdoctoral fellowships awarded to AFM and GFS.

References

  1. 1.
    Walsh CT, Tang Y (2017) Natural product biosynthesis: chemical logic and enzymatic machinery. RSC, LondonGoogle Scholar
  2. 2.
    Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629 (and references therein)PubMedCrossRefGoogle Scholar
  3. 3.
    Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5PubMedCrossRefGoogle Scholar
  4. 4.
    Aigle B, Corre C (2012) Waking up Streptomyces secondary metabolism by constitutive expression of activators or genetic disruption of repressors. Methods Enzymol 517:343PubMedCrossRefGoogle Scholar
  5. 5.
    Solecka J, Zajko J, Postek M, Rajnisz A (2012) Biologically active secondary metabolites from Actinomycetes. Cent Eur J Biol 7:373Google Scholar
  6. 6.
    Ul-Hassan A, Wellington EM (2009) Actinobacteria. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Academic, New YorkGoogle Scholar
  7. 7.
    Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862PubMedCrossRefGoogle Scholar
  8. 8.
    Tiwari K, Gupta RK (2012) Rare Actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 32:108PubMedCrossRefGoogle Scholar
  9. 9.
    van der Meij A, Worsley SF, Hutchings MI, van Wezel GP (2017) Chemical ecology of antibiotic production by Actinomycetes. FEMS Microbiol Rev 41:392PubMedCrossRefGoogle Scholar
  10. 10.
    Walsh C, Wencewicz TA (2016) Antibiotics: challenges, mechanisms, opportunities. ASM, Washington, DCGoogle Scholar
  11. 11.
    Ward AC, Bora N (2009) The Actinobacteria. In: Goldman E, Green LH (eds) Practical handbook of microbiology, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FL, p 375Google Scholar
  12. 12.
    Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34:1203PubMedCrossRefGoogle Scholar
  13. 13.
    Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic Actinobacteria of medicinal plants: diversity and bioactivity. Anton Leeuw Int J G 108:267CrossRefGoogle Scholar
  14. 14.
    Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1PubMedCrossRefGoogle Scholar
  15. 15.
    Mohammadipanah F, Wink J (2016) Actinobacteria from arid and desert habitats: diversity and biological activity. Front Microbiol 6:1541PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Singh M, Kumar A, Singh R, Pandey KD (2017) Endophytic bacteria: a new source of bioactive compounds. Biotech 7:315Google Scholar
  17. 17.
    Tiwari K, Gupta RK (2013) Diversity and isolation of rare Actinomycetes: an overview. Crit Rev Microbiol 39:256PubMedCrossRefGoogle Scholar
  18. 18.
    Azman A-S, Othman I, Velu SS, Chan K-G, Lee L-H (2015) Mangrove rare Actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Front Microbiol 6:856PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Dinesh R, Srinivasan V, Sheeja TE, Anandaraj M, Srambikkal H (2017) Endophytic Actinobacteria: diversity, secondary metabolism, and mechanisms to unsilence biosynthetic gene clusters. Crit Rev Microbiol 43:546PubMedCrossRefGoogle Scholar
  20. 20.
    Choi S-S, Kim H-J, Lee H-S, Kim P, Kim E-S (2015) Genome mining of rare Actinomycetes and cryptic pathway awakening. Process Biochem 50:1184CrossRefGoogle Scholar
  21. 21.
    Matsumoto A, Takahashi Y (2017) Endophytic Actinomycetes: promising source of novel bioactive compounds. J Antibiot 70:514PubMedCrossRefGoogle Scholar
  22. 22.
    Abdelmohsen UR, Grkovic T, Balasubramanian S, Kamel MS, Quinn RJ, Hentschel U (2015) Elicitation of secondary metabolism in Actinomycetes. Biotechnol Adv 33:798PubMedCrossRefGoogle Scholar
  23. 23.
    Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Buchanan RE (1917) Studies in the nomenclature and classification of the bacteria. II. The primary subdivisions of the Schizomycetes. J Bacteriol 2:155PubMedPubMedCentralGoogle Scholar
  25. 25.
    Nalini MS, Prakash HS (2017) Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett Appl Microbiol 64:261PubMedCrossRefGoogle Scholar
  26. 26.
    Silambarasan S, kumar EP, Murugan T, Saravanan D, Balagurunathan R (2012) Antibacterial and antifungal activities of Actinobacteria isolated from Rathnagiri hills. J Appl Pharm Sci 2:99Google Scholar
  27. 27.
    Scherr N, Nguyen L (2009) Mycobacterium versus Streptomyces—we are different, we are the same. Curr Opin Microbiol 12:699PubMedCrossRefGoogle Scholar
  28. 28.
    Subramani R, Aalbersberg W (2013) Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol 97:9291PubMedCrossRefGoogle Scholar
  29. 29.
    Dhakal D, Pokhrel AR, Shrestha B, Sohng JK (2017) Marine rare Actinobacteria: isolation, characterization, and strategies for harnessing bioactive compounds. Front Microbiol 8:1106PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Masand M, Jose PA, Menghani E, Jebakumar SR (2015) Continuing hunt for endophytic Actinomycetes as a source of novel biologically active metabolites. World J Microbiol Biotechnol 31:1863PubMedCrossRefGoogle Scholar
  31. 31.
    Chagas FO, Pessoti RC, Caraballo-Rodríguez AM, Pupo MT (2018) Chemical signaling involved in plant–microbe interactions. Chem Soc Rev 47:1652PubMedCrossRefGoogle Scholar
  32. 32.
    Viaene T, Langendries S, Beirinckx S, Maes M, Goormachtig S (2016) Streptomyces as a plant’s best friend? FEMS Microbiol Ecol 92:fiw119PubMedCrossRefGoogle Scholar
  33. 33.
    Loria R, Kers J, Joshi M (2006) Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol 44:469PubMedCrossRefGoogle Scholar
  34. 34.
    Duval I, Brochu V, Simard M, Beaulieu C, Beaudoin N (2005) Thaxtomin A induces programmed cell death in Arabidopsis thaliana suspension suspension-cultured cells. Planta 222:820PubMedCrossRefGoogle Scholar
  35. 35.
    Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Yague P, López-García MT, Rioseras B, Sánchez J, Manteca A (2013) Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives. FEMS Microbiol Lett 342:79PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Claessen D, Rozen DE, Kuipers OP, Sogaard-Andersen L, van Wezel GP (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments, and fruiting bodies. Nat Rev Microbiol 12:115PubMedCrossRefGoogle Scholar
  38. 38.
    Jones SE, Ho L, Rees CA, Hill JE, Nodwell JR, Elliot MA (2017) Streptomyces exploration is triggered by fungal interactions and volatile signals. Elife 6:e21738PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Denser CR, Guimaraes LM, Candida M (2002) Applications of image analysis in the characterization of Streptomyces olindensis in submerged culture. Braz J Microbiol 33:17CrossRefGoogle Scholar
  40. 40.
    Manteca A, Alvarez R, Salazar N, Yagüe P, Sanchez J (2008) Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl Environ Microbiol 74:3877PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    van Dissel D, Claessen D, van Wezel GP (2014) Morphogenesis of Streptomyces in submerged cultures. Adv Appl Microbiol 89:1PubMedCrossRefGoogle Scholar
  42. 42.
    Manteca A, Sánchez J (2009) Streptomyces development in colonies and soils. Appl Environ Microbiol 75:2920PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bibb MJ (2005) Regulation of secondary metabolism in Streptomycetes. Curr Opin Microbiol 8:208PubMedCrossRefGoogle Scholar
  44. 44.
    vanWezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311CrossRefGoogle Scholar
  45. 45.
    Willey JM, Gaskell AA (2010) Morphogenetic signaling molecules of the Streptomycetes. Chem Rev 111:174PubMedCrossRefGoogle Scholar
  46. 46.
    Sidda JD, Corre C (2012) Gamma-butyrolactone and furan signaling systems in Streptomyces. Methods Enzymol 517:71PubMedCrossRefGoogle Scholar
  47. 47.
    Goeke D, Kaspar D, Stoeckle C, Grubmüller S, Berens C, Klotzsche M, Hillen W (2012) Short peptides act as inducers, anti-inducers and corepressors of Tet repressor. J Mol Biol 416:33PubMedCrossRefGoogle Scholar
  48. 48.
    Corre C, Song L, O’Rourke S, Chater KF, Challis GL (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci USA 105:17510PubMedCrossRefGoogle Scholar
  49. 49.
    Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H, Nishitomi K, Uchida M, Nagamitsu T, Omura S, Ikeda H (2011) Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc Natl Acad Sci USA 108:16410PubMedCrossRefGoogle Scholar
  50. 50.
    Wang L, Tian X, Wang J, Yang H, Fan K, Xu G, Yang K, Tan H (2009) Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci USA 106:8617PubMedCrossRefGoogle Scholar
  51. 51.
    Deng W, Li C, Xie J (2013) The underlying mechanism of bacterial TetR/AcrR family transcriptional repressors. Cell Signal 25:1608PubMedCrossRefGoogle Scholar
  52. 52.
    Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9:670PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Swiatek-Polatynska MA, Tenconi E, Rigali S, van Wezel GP (2012) Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in the control of development and antibiotic production. J Bacteriol 194:113Google Scholar
  54. 54.
    Swiatek-Polatynska MA, Bucca G, Laing E, Gubbens J, Titgemeyer F, Smith CP, Rigali S, van Wezel GP (2015) Genome-wide analysis of in vivo binding of the master regulator DasR in Streptomyces coelicolor identifies novel non-canonical targets. PLoS One 10:e0122479PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Battesti A, Bouveret E (2006) Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol Microbiol 62:1048PubMedCrossRefGoogle Scholar
  56. 56.
    Hesketh A, Chen WJ, Ryding J, Chang S, Bibb M (2007) The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2). Genome Biol 8:R161PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35PubMedCrossRefGoogle Scholar
  58. 58.
    Gomez-Escribano JP, Martin JF, Hesketh A, Bibb MJ, Liras P (2008) Streptomyces clavuligerus relA-null mutants overproduce clavulanic acid and cephamycin C: negative regulation of secondary metabolism by (p)ppGpp. Microbiology 154:744PubMedCrossRefGoogle Scholar
  59. 59.
    Sanchez S, Chavez A, Forero A, Garcia-Huante Y, Romero A, Sanchez M, Rocha D, Sanchez B, Avalos M, Guzman-Trampe S, Rodriguez-Sanoja R, Langley E, Ruiz B (2010) Carbon source regulation of antibiotic production. J Antibiot 63:442PubMedCrossRefGoogle Scholar
  60. 60.
    Bruckner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141PubMedCrossRefGoogle Scholar
  61. 61.
    Titgemeyer F, Hillen W (2002) Global control of sugar metabolism: a Gram-positive solution. Anton Leeuw Int J G 82:59CrossRefGoogle Scholar
  62. 62.
    Susstrunk U, Pidoux J, Taubert S, Ullmann A, Thompson CJ (1998) Pleiotropic effects of cAMP on germination, antibiotic biosynthesis, and morphological development in Streptomyces coelicolor. Mol Microbiol 30:33PubMedCrossRefGoogle Scholar
  63. 63.
    Li M, Kim T, Kwon H, Suh J (2008) Effects of extracellular ATP on the physiology of Streptomyces coelicolor A3(2). FEMS Microbiol Lett 286:2CrossRefGoogle Scholar
  64. 64.
    Rajkarnikar A, Kwon HJ, Suh JW (2007) Role of adenosine kinase in the control of Streptomyces differentiations: loss of adenosine kinase suppresses sporulation and actinorhodin biosynthesis while inducing hyperproduction of undecylprodigiosin in Streptomyces lividans. Biochem Biophys Res Commun 363:322PubMedCrossRefGoogle Scholar
  65. 65.
    Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, van Wezel GP, Rozen DE (2015) Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc Natl Acad Sci USA 112:11054PubMedCrossRefGoogle Scholar
  66. 66.
    Chagas FO, Pupo MT (2018) Chemical interaction of endophytic fungi and actinobacteria from Lychnophora ericoides in co-cultures. Microbiol Res 212–213:10PubMedCrossRefGoogle Scholar
  67. 67.
    Chagas FO, Caraballo-Rodriguez AM, Dorrestein PC, Pupo MT (2017) Expanding the chemical repertoire of the endophyte Streptomyces albospinus RLe7 reveals amphotericin B as an inducer of a fungal phenotype. J Nat Prod 80:1302PubMedCrossRefGoogle Scholar
  68. 68.
    Chagas FO, Dias LG, Pupo MT (2013) A mixed culture of endophytic fungi increases production of antifungal polyketides. J Chem Ecol 39:1335PubMedCrossRefGoogle Scholar
  69. 69.
    McCutcheon JP, Moran NA (2011) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13PubMedCrossRefGoogle Scholar
  70. 70.
    Lo W-S, Huang Y-Y, Kuo C-H (2016) Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 40:855PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159PubMedCrossRefGoogle Scholar
  72. 72.
    Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of taxol biosynthesis by fungi. Fungal Divers 60:161CrossRefGoogle Scholar
  73. 73.
    Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214PubMedCrossRefGoogle Scholar
  74. 74.
    Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G (1995) The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. J Nat Prod 58:1315PubMedCrossRefGoogle Scholar
  75. 75.
    Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717PubMedCrossRefGoogle Scholar
  76. 76.
    Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amma T, Ahmed BV, Verma S, Singh R, Sagar A, Sharma R, Kumar RK, Sharma GN, Qazi G (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494PubMedCrossRefGoogle Scholar
  77. 77.
    Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121PubMedCrossRefGoogle Scholar
  78. 78.
    Kour A, Shawl AS, Rehman S, Qazi PH, Sudan P, Khajuria RK, Sultan P, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recursa. World J Microbiol Biotechnol 24:1115CrossRefGoogle Scholar
  79. 79.
    Cragg GM, Grothaus PG, Newman DJ (2012) Natural products in drug discovery: recent advances. In: Cechinel-Filho V (ed) Plant bioactives and drug discovery: principles, practice, and perspectives. Wiley, New York, p 1Google Scholar
  80. 80.
    Cassady JM, Chan KK, Floss HG, Leistner E (2004) Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull 52:1PubMedCrossRefGoogle Scholar
  81. 81.
    Seipke RF (2015) Strain-level diversity of secondary metabolism in Streptomyces albus. PLoS One 10:e0116457PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Amos GCA, Awakawa T, Tuttle RN, Letzel AC, Kim MC, Kudo Y, Fenical W, Moore BS, Jensen PR (2017) Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proc Natl Acad Sci USA 114:E11121PubMedCrossRefGoogle Scholar
  83. 83.
    Conti R, Chagas FO, Caraballo-Rodriguez AM, Melo WG, do Nascimento AM, Cavalcanti BC, de Moraes MO, Pessoa C, Costa-Lotufo LV, Krogh R, Andricopulo AD, Lopes NP, Pupo MT (2016) Endophytic Actinobacteria from the Brazilian medicinal plant Lychnophora ericoides Mart. and the biological potential of their secondary metabolites. Chem Biodivers 13:727Google Scholar
  84. 84.
    Kaewkla O, Franco CM (2013) Rational approaches to improving the isolation of endophytic Actinobacteria from Australian native trees. Microb Ecol 65:384Google Scholar
  85. 85.
    Zin NM, Loi CS, Sarmin NM, Rosli AN (2010) Cultivation-dependent characterization of endophytic Actinomycetes. Res J Microbiol 5:717CrossRefGoogle Scholar
  86. 86.
    Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP (2015) Isolation, abundance and phylogenetic affiliation of endophytic Actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol 6:273PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Qin S, Chen HH, Zhao GZ, Li J, Zhu WY, Xu LH, Jiang JH, Li WJ (2012) Abundant and diverse endophytic Actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ Microbiol Rep 4:522PubMedCrossRefGoogle Scholar
  88. 88.
    Dos-Santos CM, de Souza DG, Balsanelli E, Cruz LM, de Souza EM, Baldani JI, Schwab S (2017) A culture-independent approach to enrich endophytic bacterial cells from sugarcane stems for community characterization. Microb Ecol 74:453PubMedCrossRefGoogle Scholar
  89. 89.
    Nimnoi P, Pongsilp N, Lumyong S (2010) Genetic diversity and community of endophytic Actinomycetes within the roots of Aquilaria crassna Pierre ex Lec assessed by Actinomycetes-specific PCR and PCR-DGGE of 16S rRNA gene. Biochem Syst Ecol 38:595CrossRefGoogle Scholar
  90. 90.
    Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hug J, Bader C, Remškar M, Cirnski K, Müller R (2018) Concepts and methods to access novel antibiotics from Actinomycetes. Antibiotics 7:44Google Scholar
  92. 92.
    Govindasamy V, Franco CMM, Gupta VVSR (2013) Endophytic Actinobacteria: diversity and ecology. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, Berlin, p 27Google Scholar
  93. 93.
    Coombs JT, Franco CMM (2003) Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare Actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Li J, Zhao GZ, Huang HY, Qin S, Zhu WY, Li WJ (2009) Kineosporia mesophila sp. nov., isolated from the surface sterilized stem of Tripterygium wilfordii. Int J Syst Evol Microbiol 59:3150PubMedCrossRefGoogle Scholar
  96. 96.
    Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma X, Jia J, Tan Y, Cui C, Lin J, Tan C, Jiang Y, Chen Y (2011) Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc Natl Acad Sci USA 108:12943PubMedCrossRefGoogle Scholar
  97. 97.
    Qin S, Xing K, Jiang J-H, Xu L-H, Li W-J (2011) Biodiversity, bioactive natural products, and biotechnological potential of plant-associated endophytic Actinobacteria. Appl Microbiol Biotechnol 89:457Google Scholar
  98. 98.
    Okazaki T (2003) Studies on Actinomycetes isolated from plant leaves. In: Kurtböke DI (ed) Selective isolation of rare Actinomycetes. Queensland Complete Printing Service, Nambour, p 102Google Scholar
  99. 99.
    Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender J-L (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180PubMedCrossRefGoogle Scholar
  100. 100.
    Bode HB, Bethe B, Hofs R, Zeeck A (2002) Big effects from small changes: possible ways to explore Nature’s chemical diversity. Chembiochem 3:619PubMedCrossRefGoogle Scholar
  101. 101.
    Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753PubMedCrossRefGoogle Scholar
  103. 103.
    Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203PubMedCrossRefGoogle Scholar
  104. 104.
    Tuntiwachwuttikul P, Taechowisan T, Wanbanjob A, Thadaniti S, Taylor WC (2008) Lansai A-D, secondary metabolites from Streptomyces sp. SUC1. Tetrahedron 64:7583CrossRefGoogle Scholar
  105. 105.
    Wang H, Reisman SE (2014) Enantioselective total synthesis of (–)-lansai B and (+)-nocardioazines A and B. Angew Chem Int Ed 53:6206CrossRefGoogle Scholar
  106. 106.
    Inahashi Y, Iwatsuki M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Matsumoto A, Hirose T, Sunazuka T, Yamada H, Otoguro K, Takahashi Y, Omura S, Shiomi K (2011) Spoxazomicins A–C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0460(T). J Antibiot 64:303PubMedCrossRefGoogle Scholar
  107. 107.
    Wang P, Kong F, Wei J, Wang Y, Wang W, Hong K, Zhu W (2014) Alkaloids from the mangrove-derived actinomycete Jishengella endophytica 161111. Mar Drugs 12:477PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Abdalla MA (2016) Three new cyclotetrapeptides isolated from Streptomyces sp. 447. Nat Prod Res 31:1014PubMedCrossRefGoogle Scholar
  109. 109.
    Sasaki T, Igarashi Y, Saito N, Furumai T (2001) TPU-0031-A and B, new antibiotics of the novobiocin group produced by Streptomyces sp. TP-A0556. J Antibiot 54:441PubMedCrossRefGoogle Scholar
  110. 110.
    Igarashi Y, Ogawa M, Sato Y, Saito N, Yoshida R, Kunoh H, Onaka H, Furumai T (2000) Fistupyrone, a novel inhibitor of the infection of Chinese cabbage by Alternaria brassicicola, from Streptomyces sp. TP-A0569. J Antibiot 53:1117PubMedCrossRefGoogle Scholar
  111. 111.
    Aremu EA, Furumai T, Igarashi Y, Sato Y, Akamatsu H, Kodama M, Otani H (2003) Specific inhibition of spore germination of Alternaria brassicicola by fistupyrone from Streptomyces sp. TP-A0569. J Gen Plant Pathol 69:211CrossRefGoogle Scholar
  112. 112.
    McGlackena GP, Fairlamb IJS (2005) 2-Pyrone natural products and mimetics: isolation, characterisation and biological activity. Nat Prod Rep 22:369CrossRefGoogle Scholar
  113. 113.
    Zhou W, Zhuang Y, Bai Y, Bi H, Liu T, Ma Y (2016) Biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose. Microb Cell Fact 15:149PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Sasaki T, Igarashi Y, Saito N, Furumai T (2001) Cedarmycins A and B, new antimicrobial antibiotics from Streptomyces sp. TP-A0456. J Antibiot 54:567PubMedCrossRefGoogle Scholar
  115. 115.
    Cui Q, Wang J, Yang H-S, Xie L-G, Xu X-H (2010) First synthesis of cedarmycins A and B and their analogues. Chin J Org Chem 30:1705Google Scholar
  116. 116.
    Lloyd MG, D’Acunto M, Taylor RJK, Unsworth WP (2014) α-Alkylidene-γ-butyrolactone synthesis via one-pot C–H insertion/olefination: substrate scope and the total synthesis of (±)-cedarmycins A and B. Tetrahedron 71:7107CrossRefGoogle Scholar
  117. 117.
    Igarashi Y, Iida T, Yoshida R, Furumai T (2002) Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J Antibiot 55:764PubMedCrossRefGoogle Scholar
  118. 118.
    Igarashi Y, Miura S-S, Fujita T, Furumai T (2006) Pterocidin, a cytotoxic compound from the endophytic Streptomyces hygroscopicus. J Antibiot 59:193PubMedCrossRefGoogle Scholar
  119. 119.
    Nakahata T, Kuwahara S (2005) Enantioselective total synthesis of pteridic acid A. Chem Commun:1028Google Scholar
  120. 120.
    Nakahata T, Fujimura S, Kuwahara S (2006) Total synthesis of pteridic acids A and B. Chem A Eur J 12:4584CrossRefGoogle Scholar
  121. 121.
    Paterson I, Anderson EA, Findlay AD, Knappy CS (2008) Total synthesis of pteridic acids A and B. Tetrahedron 64:4768CrossRefGoogle Scholar
  122. 122.
    Dias LC, Salles AG Jr (2009) Total synthesis of pteridic acids A and B. J Org Chem 74:5584PubMedCrossRefGoogle Scholar
  123. 123.
    Yadav JS, Rajender V, Rao YG (2010) Total synthesis of pteridic acid A. Org Lett 12:348PubMedCrossRefGoogle Scholar
  124. 124.
    Furumai T, Yamakawa T, Yoshida R, Igarashi Y (2003) Clethramycin, a new inhibitor of pollen tube growth with antifungal activity from Streptomyces hygroscopicus TP-A0623. I. Screening, taxonomy, fermentation, isolation, and biological properties. J Antibiot 56:700PubMedCrossRefGoogle Scholar
  125. 125.
    Igarashi Y, Iwashita T, Fujita T, Naoki H, Yamakawa T, Yoshida R, Furumai T (2003) Clethramycin, a new inhibitor of pollen tube growth with antifungal activity from Streptomyces hygroscopicus TP-A0623. II. Physico-chemical properties and structure determination. J Antibiot 56:705PubMedCrossRefGoogle Scholar
  126. 126.
    Sun F, Xu S, Jiang F, Liu W (2018) Genomic-driven discovery of an amidinohydrolase involved in the biosynthesis of mediomycin A. Appl Microbiol Biotechnol 102:2225PubMedCrossRefGoogle Scholar
  127. 127.
    Hong H, Fill T, Leadlay PF (2013) A common origin for guanidinobutanoate starter units in antifungal natural products. Angew Chem Int Ed 52:13096CrossRefGoogle Scholar
  128. 128.
    Berlinck RGS, Romminger S (2016) The chemistry and biology of guanidine natural products. Nat Prod Rep 33:456PubMedCrossRefGoogle Scholar
  129. 129.
    Lu C, Shen Y (2003) A new macrolide antibiotic with antitumor activity produced by Streptomyces sp. CS, a commensal microbe of Maytenus hookeri. J Antibiot 56:415PubMedCrossRefGoogle Scholar
  130. 130.
    Hensens OD, Monaghan RL, Huang L, Albers-Schonberg G (1983) Structure of the sodium and potassium ion activated adenosine triphosphatase inhibitor L-681,110. J Am Chem Soc 105:3672CrossRefGoogle Scholar
  131. 131.
    O’Shea MG, Rickards RW, Rothschild JM, Lacey E (1997) Absolute configurations of macrolide antibiotics of the bafilomycin and leucanicidin groups. J Antibiot 50:1073PubMedCrossRefGoogle Scholar
  132. 132.
    Lu C, Shen Y (2004) Two new macrolides produced by Streptomyces sp. CS. J Antibiot 57:597PubMedCrossRefGoogle Scholar
  133. 133.
    Li J, Lu C, Shen Y (2010) Macrolides of the bafilomycin family produced by Streptomyces sp. CS. J Antibiot 63:595PubMedCrossRefGoogle Scholar
  134. 134.
    Yu Z, Zhao LX, Jiang CL, Duan Y, Wong L, Carver KC, Schuler LA, Shen B (2011) Bafilomycins produced by an endophytic actinomycete Streptomyces sp. YIM56209. J Antibiot 64:159PubMedCrossRefGoogle Scholar
  135. 135.
    Supong K, Thawai C, Choowong W, Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P, Parinthawong N, Pittayakhajonwut P (2016) Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice (Oryza sativa L.). Res Microbiol 167:290PubMedCrossRefGoogle Scholar
  136. 136.
    Barth R, Mulzer J (2008) Two-directional total synthesis of efomycine M and formal total synthesis of elaiolide. Tetrahedron 64:4718CrossRefGoogle Scholar
  137. 137.
    Kim N, Shin JC, Kim W, Hwang BY, Kim BS, Hong Y-S, Lee D (2006) Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces laceyi. J Antibiot 59:797PubMedCrossRefGoogle Scholar
  138. 138.
    Wang F, Xu M, Li Q, Sattler I, Lin W (2010) P-aminoacetophenonic acids produced by a mangrove endophyte Streptomyces sp. (strain HK10552). Molecules 15:2782PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Yang R, Yang J, Wang L, Huang J-P, Xiong Z, Luo J, Yu M, Yan Y, Huang S-X (2017) Lorneic acid analogues from an endophytic actinomycete. J Nat Prod 80:2615PubMedCrossRefGoogle Scholar
  140. 140.
    Zhou T, Komaki H, Ichikawa N, Hosoyama A, Sato S, Igarashi Y (2015) Biosynthesis of akaeolide and lorneic acids and annotation of type I polyketide synthase gene clusters in the genome of Streptomyces sp. NPS554. Mar Drugs 13:581PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Yan Y, Ma Y-T, Yang J, Horsman GP, Luo D, Ji X, Huang S-X (2016) Tropolone ring construction in the biosynthesis of rubrolone B, a cationic tropolone alkaloid from endophytic Streptomyces. Org Lett 8:1254CrossRefGoogle Scholar
  142. 142.
    Davison J, al Fahad A, Cai M, Song Z, Yehia SY, Lazarus CM, Bailey AM, Simpson TJ, Cox RJ (2012) Genetic, molecular, and biochemical basis of fungal tropolone biosynthesis. Proc Natl Acad Sci USA 109:7642PubMedCrossRefGoogle Scholar
  143. 143.
    Huang S-X, Yu Z, Robert F, Zhao L-X, Jiang Y, Duan Y, Pelletier J, Shen B (2011) Cycloheximide and congeners as inhibitors of eukaryotic protein synthesis from endophytic Actinomycetes Streptomyces spp. YIM56132 and YIM56141. J Antibiot 64:163PubMedCrossRefGoogle Scholar
  144. 144.
    Igarashi Y, Ogura H, Furihata K, Oku N, Indananda C, Thamchaipenet A (2011) Maklamicin, an antibacterial polyketide from an endophytic Micromonospora sp. J Nat Prod 74:670PubMedCrossRefGoogle Scholar
  145. 145.
    Daduang R, Kitani S, Hashimoto J, Thamchaipenet A, Igarashi Y, Shin-ya K, Ikeda H, Nihira T (2015) Characterization of the biosynthetic gene cluster for maklamicin, a spirotetronate-class antibiotic of the endophytic Micromonospora sp. NBRC 110955. Microbiol Res 180:30PubMedCrossRefGoogle Scholar
  146. 146.
    Liu H, Chen Z, Zhu G, Wang L, Du Y, Wang Y, Zhu W (2017) Phenolic polyketides from the marine alga-derived Streptomyces sp. OUCMDZ-3434. Tetrahedron 73:5451CrossRefGoogle Scholar
  147. 147.
    Khieu T-N, Liu M-J, Nimaichand S, Quach N-T, Chu-Ky S, Phi Q-T, Vu T-T, Nguyen T-D, Xiong Z, Prabhu DM, Li W-J (2015) Characterization and evaluation of antimicrobial and cytotoxic effects of Streptomyces sp. HUST012 isolated from medicinal plant Dracaena cochinchinensis Lour. Front Microbiol 6:574PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Indananda C, Igarashi Y, Ikeda M, Oikawa T, Thamchaipenet A (2013) Linfuranone A, a new polyketide from plant-derived Microbispora sp. GMKU 363. J Antibiot 66:675PubMedCrossRefGoogle Scholar
  149. 149.
    Akiyama H, Indananda C, Thamchaipenet A, Motojima A, Oikawa T, Komaki H, Hosoyama A, Kimura A, Oku N, Igarashi Y (2018) Linfuranones B and C, furanone-containing polyketides from a plant-associated Sphaerimonospora mesophila. J Nat Prod 81:1561PubMedCrossRefGoogle Scholar
  150. 150.
    Li J, Lu C-H, Shen Y-M (2008) Novel polyketides isolated from Streptomyces sp. Helv Chim Acta 91:741CrossRefGoogle Scholar
  151. 151.
    Li Y, Wu Y, Wang H, Huang Y, Lu C, Shen Y (2013) Two new germicidins from the endophytic Streptomyces sp. A00122 of Camptotheca acuminata. Rec Nat Prod 7:45Google Scholar
  152. 152.
    Aoki Y, Matsumoto D, Kawaide H, Natsume M (2011) Physiological role of germicidins in spore germination and hyphal elongation in Streptomyces coelicolor A3(2). J Antibiot 64:607PubMedCrossRefGoogle Scholar
  153. 153.
    Song L, Barona-Gomez F, Corre C, Xiang L, Udwary DW, Austin MB, Noel JP, Moore BS, Challis GL (2006) Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Am Chem Soc 128:14754PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Chemler JA, Buchholz TJ, Geders TW, Akey DL, Rath CM, Chlipala GE, Smith JL, Sherman DH (2012) Biochemical and structural characterization of germicidin synthase: analysis of a type III polyketide synthase that employs Acyl-ACP as a starter unit donor. J Am Chem Soc 134:7359PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Inahashi Y, Iwatsuki M, Ishiyama A, Matsumoto A, Hirose T, Oshita J, Sunazuka T, Panbangred W, Takahashi Y, Kaiser M, Otoguro K, Ōmura S (2015) Actinoallolides A–E, new anti-trypanosomal macrolides, produced by an endophytic actinomycete, Actinoallomurus fulvus MK10-036. Org Lett 17:864PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Inahashi Y, Shiraishi T, Také A, Matsumoto A, Takahashi Y, Ōmura S, Kuzuyama T, Nakashima T (2018) Identification and heterologous expression of the actinoallolide biosynthetic gene cluster. J Antibiot 71:749Google Scholar
  157. 157.
    Tsukamoto M, Hirayama M, Nakajima S, Okabe T, Ojiri K, Suda H (1997) Manufacture of antitumor BE-41956 derivatives by fermentation of Streptomyces. Jpn Kokai Tokkyo Koho, JP 09241257Google Scholar
  158. 158.
    Naruse N, Goto M, Watanabe Y, Terasawa T, Dobashi K (1998) K1115 A, a new anthraquinone derivative that inhibits the binding of activator protein-1 (AP-1) to its recognition sites. I. Biological activities. J Antibiot 51:545PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Bieber B, Nüske J, Ritzau M, Gräfe U (1998) Alnumycin a new naphthoquinone antibiotic produced by an endophytic Streptomyces sp. J Antibiot 51:381PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Oja T, Palmu K, Lehmussola H, Leppäranta O, Hännikäinen K, Niemi J, Mäntsälä P, Metsä-Ketelä M (2008) Characterization of the alnumycin gene cluster reveals unusual gene products for pyran ring formation and dioxan biosynthesis. Chem Biol 15:1046PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Metsä-Ketelä M, Oja T, Taguchi T, Okamoto S, Ichinose K (2013) Biosynthesis of pyranonaphthoquinone polyketides reveals diverse strategies for enzymatic carbon-carbon bond formation. Curr Opin Chem Biol 17:562PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Taguchi T, Yabe M, Odaki H, Shinozaki M, Metsä-Ketelä M, Arai T, Okamoto S, Ichinose K (2013) Biosynthetic conclusions from the functional dissection of oxygenases for biosynthesis of actinorhodin and related Streptomyces antibiotics. Chem Biol 20:510PubMedCrossRefGoogle Scholar
  163. 163.
    Oja T, Niiranen L, Sandalova T, Klika KD, Niemi J, Mäntsälä P, Schneider G, Metsä-Ketelä M (2012) Structural basis for C-ribosylation in the alnumycin A biosynthetic pathway. Proc Natl Acad Sci USA 110:1291CrossRefGoogle Scholar
  164. 164.
    Oja T, Klika KD, Appassamy L, Sinkkonen J, Mäntsälä P, Niemi J, Metsä-Ketelä M (2012) Biosynthetic pathway toward carbohydrate-like moieties of alnumycins contains unusual steps for C-C bond formation and cleavage. Proc Natl Acad Sci USA 109:6024PubMedCrossRefGoogle Scholar
  165. 165.
    Tatsuta K, Tokishita S, Fukuda T, Kano T, Komiya T, Hosokawa S (2011) The first total synthesis and structural determination of antibiotics K1115 B1s (alnumycins). Tetrahedron Lett 52:983CrossRefGoogle Scholar
  166. 166.
    Igarashi Y, Trujillo ME, Martínez-Molina E, Yanase S, Miyanaga S, Obata T, Sakuraic H, Saiki I, Fujita T, Furumai T (2007) Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg Med Chem Lett 17:3702PubMedCrossRefGoogle Scholar
  167. 167.
    Igarashi Y, Yanase S, Sugimoto K, Enomoto M, Miyanaga S, Trujillo ME, Saiki I, Kuwahara S (2011) Lupinacidin C, an inhibitor of tumor cell invasion from Micromonospora lupini. J Nat Prod 74:862PubMedCrossRefGoogle Scholar
  168. 168.
    Sugimoto K, Enomoto M, Kuwahara S (2010) Synthesis of lupinacidins A and B via sequential cycloaddition–double elimination. Tetrahedron Lett 51:4570CrossRefGoogle Scholar
  169. 169.
    Lu C, Shen Y (2007) A novel ansamycin, naphthomycin K from Streptomyces sp. J Antibiot 60:649PubMedCrossRefGoogle Scholar
  170. 170.
    Yang Y-H, Fu X-L, Li L-Q, Zeng Y, Li C-Y, He Y-N, Zhao P-J (2012) Naphthomycins L–N, ansamycin antibiotics from Streptomyces sp. CS. J Nat Prod 75:1409PubMedCrossRefGoogle Scholar
  171. 171.
    Liu M, Abdel-Mageed WM, Ren B, He W, Huang P, Li X, Bolla K, Guo H, Chen C, Song F, Dai H, Quinn RJ, Grkovic T, Zhang X, Liu X, Zhang L (2014) Endophytic Streptomyces sp. Y3111 from traditional Chinese medicine produced antitubercular pluramycins. Appl Microbiol Biotechnol 98:1077PubMedCrossRefGoogle Scholar
  172. 172.
    Jones KD, Rixson JE, Skelton BW, Gericke KM, Stewart SG (2015) The total synthesis of heraclemycin B through β-ketosulfoxide and aldehyde annulation. Asian J Org Chem 4:936CrossRefGoogle Scholar
  173. 173.
    Li W, Yang X, Yang Y, Zhao L, Xu L, Ding Z (2015) A new anthracycline from endophytic Streptomyces sp. YIM66403. J Antibiot 68:216PubMedCrossRefGoogle Scholar
  174. 174.
    Ding L, Maier A, Fiebig H-H, Lin W-H, Peschel G, Hertweck C (2012) Kandenols A–E, eudesmenes from an endophytic Streptomyces sp. of the mangrove tree Kandelia candel. J Nat Prod 75:2223PubMedCrossRefGoogle Scholar
  175. 175.
    Ding L, Maier A, Fiebig H-H, Lin W-H, Hertweck C (2011) A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem 9:4029PubMedCrossRefGoogle Scholar
  176. 176.
    Li H, Zhang Q, Li S, Zhu Y, Zhang G, Zhang H, Tian X, Zhang S, Ju J, Zhang C (2012) Identification and characterization of xiamycin A and oxiamycin gene cluster reveals an oxidative cyclization strategy tailoring indolosesquiterpene biosynthesis (2012). J Am Chem Soc 134:8996PubMedCrossRefGoogle Scholar
  177. 177.
    Kugel S, Baunach M, Baer P, Ishida-Ito M, Sundaram S, Xu Z, Groll M, Hertweck C (2017) Cryptic indole hydroxylation by a non-canonical terpenoid cyclase parallels bacterial xenobiotic detoxification. Nat Commun 8:15804PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Sun Y, Chen P, Zhang D, Baunach M, Hertweck C, Li A (2014) Bioinspired total synthesis of sespenine. Angew Chem Int Ed 126:9158CrossRefGoogle Scholar
  179. 179.
    Meng Z, Yu H, Li L, Tao W, Chen H, Wan M, Yang P, Edmonds DJ, Zhong J, Li A (2015) Total synthesis and antiviral activity of indolosesquiterpenoids from the xiamycin and oridamycin families. Nat Commun 4:6096CrossRefGoogle Scholar
  180. 180.
    Xiong X, Zhang D, Li J, Sun Y, Zhou S, Yang M, Shao H, Li A (2015) Synthesis of indole terpenoid mimics through a functionality tolerated Eu(fod)3-catalyzed conjugate addition. Chem Asian J 10:869PubMedCrossRefGoogle Scholar
  181. 181.
    Sun Y, Meng Z, Chen P, Zhang D, Baunach M, Hertweck C Li A (2016) A concise total synthesis of sespenine, a structurally unusual indole terpenoid from Streptomyces. Org Chem Front 3:368CrossRefGoogle Scholar
  182. 182.
    Pullen C, Schmitz P, Meurer K, Bamberg DD, Lohmann S, França SC, Groth I, Schlegel B, Möllmann U, Gollmick F, Gräfe U, Leistner E (2002) New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae. Planta 216:162PubMedCrossRefGoogle Scholar
  183. 183.
    Kikuchi H, Sekiya M, Katou Y, Ueda K, Kabeya T, Kurata S, Oshima Y (2009) Revised structure and synthesis of celastramycin A, a potent innate immune suppressor. Org Lett 11:1693PubMedCrossRefGoogle Scholar
  184. 184.
    Nakashima T, Okuyama R, Kamiya Y, Matsumoto A, Iwatsuki M, Inahashi Y, Yamaji K, Takahashi Y, Ōmura S (2013) Trehangelins A, B and C, novel photo-oxidative hemolysis inhibitors produced by an endophytic actinomycete, Polymorphospora rubra K07-0510. J Antibiot 66:311PubMedCrossRefGoogle Scholar
  185. 185.
    Inahashi Y, Shiraishi T, Kaia P, Takahashi Y, Omura S, Kuzuyama T, Nakashima T (2016) Biosynthesis of trehagelin in Polymorphospora rubra K07-0510: identification of metabolic pathway to angelyl-CoA. Chembiochem 17:1442PubMedCrossRefGoogle Scholar
  186. 186.
    Zhang J, Wang J-D, Liu C-X, Yuan J-H, Wang X-J, Xiang W-S (2014) A new prenylated indole derivative from endophytic Actinobacteria Streptomyces sp. neau-D50. Nat Prod Res 28:431PubMedCrossRefGoogle Scholar
  187. 187.
    Boonsnongcheep P, Nakashima T, Takahashi Y, Prathanturarug S (2017) Diversity of endophytic Actinomycetes isolated from roots and root nodules of Pueraria candollei Grah. ex Benth. and the analyses of their secondary metabolites. Chiang Mai J Sci 44:1Google Scholar
  188. 188.
    Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314PubMedCrossRefGoogle Scholar
  189. 189.
    Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81PubMedCrossRefGoogle Scholar
  190. 190.
    Borges WS, Borges KB, Bonato PS, Said S, Pupo MT (2009) Endophytic fungi: natural products, enzymes and biotransformation reactions. Curr Org Chem 13:1137CrossRefGoogle Scholar
  191. 191.
    Staniek A, Woerdenbag HJ, Kayser O (2008) Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J Plant Interact 3:75CrossRefGoogle Scholar
  192. 192.
    Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792PubMedCrossRefGoogle Scholar
  193. 193.
    Unterseher M, Schnittler M (2009) Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.) – Different cultivation techniques influence fungal biodiversity assessment. Mycol Res 113:645PubMedCrossRefGoogle Scholar
  194. 194.
    Unterseher M (2011) Diversity of fungal endophytes in temperate forest trees. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications. Springer, Dordrecht, p 31CrossRefGoogle Scholar
  195. 195.
    Igarashi Y (2004) Screening of novel bioactive compounds from plant-associated Actinomycetes. Actinomycetologica 18:63CrossRefGoogle Scholar
  196. 196.
    Janso JE, Carter GT (2010) Biosynthetic potential of phylogenetically unique endophytic Actinomycetes from tropical plants. Appl Environ Microbiol 76:4377PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Knight V, Sanglier JJ, DiTullio D, Braccili S, Bonner P, Waters J, Hughes D, Zhang L (2003) Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol 62:446PubMedCrossRefGoogle Scholar
  198. 198.
    Baker DD, Chu M, Oza U, Rajgarhia V (2007) The value of natural products to future pharmaceutical discovery. Nat Prod Rep 24:1225PubMedCrossRefGoogle Scholar
  199. 199.
    Carter GT (2011) Natural products and Pharma 2011: strategic changes spur new opportunities. Nat Prod Rep 28:1783PubMedCrossRefGoogle Scholar
  200. 200.
    Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Cragg GM, Newman DJ (2009) Nature: a vital source of leads for anticancer drug development. Phytochem Res 8:313CrossRefGoogle Scholar
  202. 202.
    Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385PubMedCrossRefGoogle Scholar
  203. 203.
    Singh BK, Macdonald CA (2010) Drug discovery from uncultivable microorganisms. Drug Discov Today 15:792PubMedCrossRefGoogle Scholar
  204. 204.
    Demain AL (2009) Antibiotics: natural products essential to human health. Med Res Rev 29:821PubMedCrossRefGoogle Scholar
  205. 205.
    Ashforth EJ, Fu C, Liu X, Dai H, Song F, Guo H, Zhang L (2010) Bioprospecting for antituberculosis leads from microbial metabolites. Nat Prod Rep 27:1709PubMedCrossRefGoogle Scholar
  206. 206.
    Zengler K, Paradkar A, Keller M (2005) New methods to access microbial diversity for small molecule discovery. In: Zhang L, Demain AL (eds) Natural products: drug discovery and therapeutic medicine. Humana, Totowa, NJ, p 275CrossRefGoogle Scholar
  207. 207.
    Vining LC (1990) Functions of secondary metabolites. Annu Rev Microbiol 44:395PubMedCrossRefGoogle Scholar
  208. 208.
    Davies J, Ryan KS (2012) Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol 7:252PubMedCrossRefGoogle Scholar
  209. 209.
    Davies J (2013) Specialized microbial metabolites: functions and origins. J Antibiot 66:361PubMedCrossRefGoogle Scholar
  210. 210.
    Martínez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321:365PubMedCrossRefGoogle Scholar
  211. 211.
    Mitscher LA (2008) Coevolution: mankind and microbes. J Nat Prod 71:497PubMedCrossRefGoogle Scholar
  212. 212.
    Scheffler RJ, Colmer S, Tynan H, Demain AL, Gullo VP (2013) Antimicrobials, drug discovery, and genome mining. Appl Microbiol Biotechnol 97:969PubMedCrossRefGoogle Scholar
  213. 213.
    Singh SB, Barrett JF (2006) Empirical antibacterial drug discovery—foundation in natural products. Biochem Pharmacol 71:1006PubMedCrossRefGoogle Scholar
  214. 214.
    Donadio S, Brandi L, Monciardini P, Sosio M, Gualerzi CO (2007) Novel assays and novel strains – promising routes to new antibiotics? Expert Opin Drug Discov 2:789PubMedCrossRefGoogle Scholar
  215. 215.
    Wrigley SK (2004) Pharmacologically active agents of microbial origin. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, DC, p 356CrossRefGoogle Scholar
  216. 216.
    Baltz RD (2010) Daptomycin. In: Buss AD, Butler MS (eds) Natural product chemistry for drug discovery. RSC, Cambridge, UK, p 395Google Scholar
  217. 217.
    Fujie A, Tawara S, Hashimoto S (2010) Micafubgin. In: Buss AD, Butler MS (eds) Natural product chemistry for drug discovery. RSC, Cambridge, UK, p 410Google Scholar
  218. 218.
    Bugni TS, Harper MK, McCulloch MWB, Whitson EL (2010) Advances in instrumentation, automation, dereplication and prefractionation. In: Buss AD, Butler MS (eds) Natural product chemistry for drug discovery. RSC, Cambridge, UK, p 272Google Scholar
  219. 219.
    Krug D, Zurek G, Schneider B, Garcia R, Müller R (2008) Efficient mining of myxobacterial metabolite profiles enabled by liquid chromatography–electrospray ionisation-time-of-flight mass spectrometry and compound-based principal component analysis. Anal Chim Acta 624:97PubMedCrossRefGoogle Scholar
  220. 220.
    Hou Y, Braun DR, Michel CR, Klassen JL, Adnani N, Wyche TP, Bugni TS (2012) Microbial strain prioritization using metabolomics tools for the discovery of natural products. Anal Chem 84:4277PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Wagenaar MM (2008) Pre-fractionated microbial samples – the second generation natural products library at Wyeth. Molecules 13:1406PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Månsson M, Phipps RK, Gram L, Munro MH, Larsen TO, Nielsen KF (2010) Explorative solid-phase extraction (E-SPE) for accelerated microbial natural product discovery, dereplication, and purification. J Nat Prod 73:1126PubMedCrossRefGoogle Scholar
  223. 223.
    Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography–UV–mass spectrometry methodology. J Chromatogr A 1002:111PubMedCrossRefGoogle Scholar
  224. 224.
    Nielsen KF, Smedsgaard J, Larsen TO, Lund F, Thrane U, Frisvad JC (2004) Chemical identification of fungi: metabolite profiling and metabolomics. In: Arora DK (ed) Fungal biotechnology in agricultural, food, and environmental applications. Marcel Dekker, Basel, p 31Google Scholar
  225. 225.
    Higgs RE, Zahn JA, Gygi JD, Hilton MD (2001) Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl Environ Microbiol 67:371PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22:672PubMedCrossRefGoogle Scholar
  227. 227.
    Baltz RH, Davies JE, Demain AL (2010) Manual of industrial microbiology and biotechnology. ASM, Washington, DC, p 766Google Scholar
  228. 228.
    Bull AT (2004) Microbial diversity and bioprospecting. ASM, Washington, DC, p 496Google Scholar
  229. 229.
    Zengler K (2008) Accessing uncultivated microorganisms: from the environment to organisms and genomes and back. ACM, Washington DC, UK, p 308CrossRefGoogle Scholar
  230. 230.
    Pearce C, Eckard P, Gruen-Wollny I, Hansske FG (2010) Microorganisms: their role in the discovery and development of medicines. In: Buss AD, Butler MS (eds) Natural product chemistry for drug discovery. RSC, Cambridge, UK, p 215Google Scholar
  231. 231.
    Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi. Phytopathology 87:888PubMedCrossRefGoogle Scholar
  232. 232.
    Keller M, Zengler K (2004) Tapping into microbial diversity. Nat Rev Microbiol 2:141PubMedCrossRefGoogle Scholar
  233. 233.
    Hedlund BP, Staley JT (2004) Microbial endemism and biogeography. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, DC, p 225CrossRefGoogle Scholar
  234. 234.
    Fierer N (2008) Microbial biogeography: patterns in microbial diversity across space and time. In: Zengler K (ed) Accessing uncultivated microorganisms: from the environment to organisms and genomes and back. ASM, Washington, DC, p 95Google Scholar
  235. 235.
    Kingston DGI (2010) Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 74:496PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Gallagher KA, Fenical W, Jensen PR (2010) Hybrid isoprenoid secondary metabolite production in terrestrial and marine actinomycetes. Curr Opin Biotechnol 21:794PubMedCrossRefGoogle Scholar
  237. 237.
    Piel J (2006) Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13:39PubMedCrossRefGoogle Scholar
  238. 238.
    Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641PubMedCrossRefGoogle Scholar
  239. 239.
    Lackner G, Peters EE, Helfrich EJ, Piel J (2017) Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc Natl Acad Sci USA 114:E347PubMedCrossRefGoogle Scholar
  240. 240.
    Mori T, Cahn JK, Wilson MC, Meoded RA, Wiebach V, Martinez AFC, Helfrich EJN, Wibberg D, Dätwyler S, Keren R, Lavy A, Rückert C, Ilan M, Kalinowski J, Matsunaga S, Takeyama H, Piel J (2018) Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc Natl Acad Sci USA 115:1718PubMedCrossRefGoogle Scholar
  241. 241.
    Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ, Takada K, Gernert C, Steffens UAE, Heycke N, Schmitt S, Rinke C, Helfrich EJN, Brachmann AO, Gurgui C, Wakimoto T, Kracht M, Crüsemann M, Hentschel U, Abe I, Matsunaga S, Kalinowski J, Takeyama H, Piel J (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506:58PubMedCrossRefGoogle Scholar
  242. 242.
    Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM, Tiong CL (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Su C, Lei L, Duan Y, Zhang KQ, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93:993PubMedCrossRefGoogle Scholar
  244. 244.
    Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981PubMedCrossRefGoogle Scholar
  245. 245.
    Lefevre F, Robe P, Jarrin C, Ginolhac A, Zago C, Auriol D, Vogel TM, Simonet P, Nalin R (2008) Drugs from hidden bugs: their discovery via untapped resources. Res Microbiol 159:153PubMedCrossRefGoogle Scholar
  246. 246.
    Schofield MM, Sherman DH (2013) Meta-omic characterization of prokaryotic gene clusters for natural product biosynthesis. Curr Opin Biotechnol 24:1CrossRefGoogle Scholar
  247. 247.
    Sloan WT, Quince C, Curtis TP (2008) The uncountables. In: Zengler K (ed) Accessing uncultivated microorganisms: from the environment to organisms and genomes and back. ASM, Washington, DC, p 52Google Scholar
  248. 248.
    Leadbetter JR (2003) Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr Opin Microbiol 6:274PubMedCrossRefGoogle Scholar
  249. 249.
    Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583PubMedCrossRefGoogle Scholar
  250. 250.
    Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127PubMedCrossRefGoogle Scholar
  252. 252.
    Nichols D (2007) Cultivation gives context to the microbial ecologist. FEMS Microbiol Ecol 60:351PubMedCrossRefGoogle Scholar
  253. 253.
    Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475PubMedCrossRefGoogle Scholar
  254. 254.
    Joint J, Mühling M, Querellou J (2010) Culturing marine bacteria—an essential prerequisite for biodiscovery. J Microb Biotechnol 3:564CrossRefGoogle Scholar
  255. 255.
    Ishii S, Tago K, Senoo K (2010) Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Appl Microbiol Biotechnol 86:1281PubMedCrossRefGoogle Scholar
  256. 256.
    Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of “unculturable” bacteria. FEMS Microbiol Lett 309:1PubMedGoogle Scholar
  257. 257.
    Lewis K, Epstein S, D’Onofrio A, Ling LL (2010) Uncultured microorganisms as a source of secondary metabolites. J Antibiot 63:468PubMedCrossRefGoogle Scholar
  258. 258.
    Puspita ID, Kamagata Y, Tanaka M, Asano K, Nakatsu CH (2012) Are uncultivated bacteria really uncultivable? Microbes Environ 27:356PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Hames-Kocabas EE, Uzel A (2012) Isolation strategies of marine-derived Actinomycetes from sponge and sediment samples. J Microbiol Methods 88:342PubMedCrossRefGoogle Scholar
  260. 260.
    Prakash O, Shouche Y, Jangid K, Kostka JE (2013) Microbial cultivation and the role of microbial resource centers in the omics era. Appl Microbiol Biotechnol 97:51PubMedCrossRefGoogle Scholar
  261. 261.
    Epstein SS (2009) Uncultivated microorganisms. In: Steinbüchel A (ed) Microbiology monographs, vol 10. Springer, Berlin, p 214Google Scholar
  262. 262.
    Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Ferrari BC, Binnerup SJ, Gillings M (2005) Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol 71:8714PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Ferrari BC, Winsley T, Gillings M, Binnerup S (2008) Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat Protoc 3:1261PubMedCrossRefGoogle Scholar
  265. 265.
    Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, Kanigan T, Lewis K, Epstein SS (2010) Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76:2445PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Buerger S, Spoering A, Gavrish E, Leslin C, Ling L, Epstein SS (2012) Microbial scout hypothesis and microbial discovery. Appl Environ Microbiol 78:3229PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Krishna C (2005) Solid-state fermentation systems-an overview. Crit Rev Biotechnol 25:1PubMedCrossRefGoogle Scholar
  268. 268.
    Ruiz-Sanchez J, Flores-Bustamante ZR, Dendooven L, Favela-Torres E, Soca-Chafre G, Galindez-Mayer J, Flores-Cotera LB (2010) A comparative study of taxol production in liquid and solid-state fermentation with Nigrospora sp. a fungus isolated from Taxus globosa. J Appl Microbiol 109:2144PubMedCrossRefGoogle Scholar
  269. 269.
    Frisvad JC (2013) Media and growth conditions for induction of secondary metabolite production. Methods Mol Biol 944:47Google Scholar
  270. 270.
    Dunfield PF, Tamas I, Lee KC, Morgan XC, McDonald IR, Stott MB (2012) Electing a candidate: a speculative history of the bacterial phylum OP10. Environ Microbiol 14:3069PubMedCrossRefGoogle Scholar
  271. 271.
    Bode HB (2006) No need to be pure: mix the cultures. Chem Biol 13:1245PubMedCrossRefGoogle Scholar
  272. 272.
    Pettit RK (2009) Mixed fermentation for natural product drug discovery. Appl Microbiol Biotechnol 83:19PubMedCrossRefGoogle Scholar
  273. 273.
    Li PF, Li SG, Li ZF, Zhao L, Wang T, Pan HW, Liu H, Wu ZH, Li YZ (2013) Co-cultivation of Sorangium cellulosum strains affects cellular growth and biosynthesis of secondary metabolite epothilones. FEMS Microbiol Ecol 85:358PubMedCrossRefGoogle Scholar
  274. 274.
    Shrestha PM, Nevin KP, Shrestha M, Lovley DR (2013) When is a microbial culture “pure”? Persistent cryptic contaminant escapes detection even with deep genome sequencing. mBio 4:e00591PubMedPubMedCentralGoogle Scholar
  275. 275.
    Cho J-C, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine gammaproteobacteria. Appl Environ Microbiol 70:432PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826PubMedPubMedCentralCrossRefGoogle Scholar
  277. 277.
    Gich F, Janys MA, König M, Overmann J (2012) Enrichment of previously uncultured bacteria from natural complex communities by adhesion to solid surfaces. Environ Microbiol 14:2984PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Bigelis R, He H, Yang HY, Chang L-P, Greenstein M (2006) Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation. J Ind Microbiol Biotechnol 33:815PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Tormo JR, Asensio FJ, Bills GF (2013) Manipulating filamentous fungus chemical phenotypes by growth on nutritional arrays. In: Keller NP, Turner G (eds) Fungal secondary metabolism: methods and protocols, methods in molecular biology, vol 944. Humana/Springer, Totowa, NJ, p 217Google Scholar
  280. 280.
    Bills GF, Platas G, Fillola A, Jiménez MR, Collado J, Vicente F, Martín J, González A, Bur-Zimmermann J, Tormo JR, Peláez F (2008) Enhancement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays. J Appl Microbiol 104:1644PubMedCrossRefPubMedCentralGoogle Scholar
  281. 281.
    Shao H-J, Qin X-D, Dong Z-J, Zhang H-B, Liu J-K (2008) Induced daldinin A, B, C with a new skeleton from cultures of the ascomycete Daldinia concentrica. J Antibiot 61:115PubMedCrossRefPubMedCentralGoogle Scholar
  282. 282.
    Seibert SF, Krick A, Eguereva E, Kehraus S, König GM (2007) Ascospiroketals A and B, unprecedented cycloethers from the marine-derived fungus Ascochyta salicorniae. Org Lett 9:239PubMedCrossRefPubMedCentralGoogle Scholar
  283. 283.
    Du L, Ai J, Li D, Zhu T, Wang Y, Knauer M, Bruhn T, Liu H, Geng M, Gu Q, Bringmann G (2010) Aspergiolides C and D: spirocyclic aromatic polyketides with potent protein kinase c-Met inhibitory effects. Chem A Eur J 17:1319CrossRefGoogle Scholar
  284. 284.
    Li D, Chen L, Zhu T, Kurtán T, Mándi A, Zhao Z, Li J, Gu Q (2011) Chloctanspirones A and B, novel chlorinated polyketides with an unprecedented skeleton, from marine sediment derived fungus Penicillium terrestre. Tetrahedron 67:7913CrossRefGoogle Scholar
  285. 285.
    Nett M, Hertweck C (2011) Farinamycin, a quinazoline from Streptomyces griseus. J Nat Prod 74:2265PubMedCrossRefGoogle Scholar
  286. 286.
    Lösgen S, Magull J, Schulz B, Draeger S, Zeeck A (2008) Isofusidienols: novel chromone-3-oxepines produced by the endophytic fungus Chalara sp. Eur J Org Chem 2008:698CrossRefGoogle Scholar
  287. 287.
    Wang X-J, Zhang J, Liu C-X, Gong D-L, Zhang H, Wang J-D, Yan Y, Xiang W (2011) A novel macrocyclic lactone with insecticidal bioactivity from Streptomyces microflavus neau3. Bioorg Med Chem Lett 21:5145PubMedCrossRefGoogle Scholar
  288. 288.
    Lin Z, Zhu T, Wei H, Zhang G, Wang H, Gu Q (2009) Spicochalasin A and new aspochalasins from the marine-derived fungus Spicaria elegans. Eur J Org Chem 18:3045CrossRefGoogle Scholar
  289. 289.
    Loesgen S, Bruhn T, Meindl K, Dix I, Schulz B, Zeeck A, Bringmann G (2011) (+)-Flavipucine, the missing member of the pyridione epoxide family of fungal antibiotics. Eur J Org Chem 26:5156CrossRefGoogle Scholar
  290. 290.
    Bender T, Schuhmann T, Magull J, Grond S, von Zezschwitz P (2006) Comprehensive study of okaspirodiol: characterization, total synthesis, and biosynthesis of a new metabolite from Streptomyces. J Org Chem 71:7125PubMedCrossRefGoogle Scholar
  291. 291.
    Surup F, Wagner O, von Frieling J, Schleicher M, Oess S, Müller P, Grond S (2007) The iromycins, a new family of pyridone metabolites from Streptomyces sp. I. Structure, NOS inhibitory activity, and biosynthesis. J Org Chem 72:5085PubMedCrossRefGoogle Scholar
  292. 292.
    Kang M, Jones BD, Mandel AL, Hammons JC, DiPasquale AG, Rheingold AL, La Clair JJ, Burkart MD (2009) Isolation, structure elucidation, and antitumor activity of spirohexenolides A and B. J Org Chem 74:9054PubMedCrossRefGoogle Scholar
  293. 293.
    Pimenta EF, Vita-Marques AM, Tininis A, Seleghim MHR, Sette LD, Veloso K, Ferreira AG, Williams DE, Patrick BO, Salisay DS, Andersen RJ, Berlinck RGS (2010) Use of experimental design for the optimization of the production of new secondary metabolites by two Penicillium species. J Nat Prod 73:1821PubMedCrossRefGoogle Scholar
  294. 294.
    Ferreira ELF, Williams DE, Ióca LP, Morais-Urano RP, Santos MFC, Patrick BO, Elias LM, Lira SP, Ferreira AG, Passarini MRZ, Sette LD, Andersen RJ, Berlinck RGS (2015) Structure and biogenesis of roussoellatide, a dichlorinated polyketide from the marine-derived fungus Roussoella sp. DLM33. J Nat Prod 17:5152Google Scholar
  295. 295.
    Silva GH, Oliveira CM, Teles HL, Pauletti PM, Castro-Gamboa I, Silva DHS, Bolzani VS, Young MCM, Costa-Neto CM, Pfenning LH, Berlinck RGS, Araujo AR (2010) Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem Lett 3:164CrossRefGoogle Scholar
  296. 296.
    Oliveira CM, Regasini LO, Silva GH, Pfenning LH, Young MCM, Berlinck RGS, Bolzani VS, Araujo AR (2011) Dihydroisocoumarins produced by Xylaria sp. and Penicillium sp., endophytic fungi associated with Piper aduncum and Alibertia macrophylla. Phytochem Lett 4:93CrossRefGoogle Scholar
  297. 297.
    Oliveira CM, Silva GH, Regasini LO, Flausino O Jr, Lopez SN, Abissi BM, Berlinck RGS, Sette LD, Bonugli-Santos RC, Rodrigues A, Bolzani VS, Araujo AR (2011) Xylarenones C-E from an endophytic fungus isolated from Alibertia macrophylla. J Nat Prod 74:1353PubMedCrossRefGoogle Scholar
  298. 298.
    Romminger S, Pimenta EF, Nascimento ES, Ferreira AG, Berlinck RGS (2012) Biosynthesis of two dihydropyrrole-polyketides from a marine-derived Penicillium citrinum. J Braz Chem Soc 23:1783CrossRefGoogle Scholar
  299. 299.
    Kossuga MH, Ferreira AG, Sette LD, Berlinck RGS (2013) Two polyketides from a co-culture of two marine-derived fungal strains. Nat Prod Commun 8:721Google Scholar
  300. 300.
    Mercado-Marin EV, Garcia-Reynaga P, Romminger S, Pimenta EF, Romney DK, Lodewyk MW, Williams DE, Andersen RJ, Miller SJ, Tantillo DJ, Berlinck RGS, Sarpong R (2014) Total synthesis and isolation of citrinalin and cyclopiamine congeners. Nature 509:318PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Rodriguez JP, Williams DE, Sabater ID, Bonugli-Santos RC, Sette LD, Andersen RJ, Berlinck RGS (2015) The marine-derived fungus Tinctoporellus sp. CBMAI 1061 degrades the dye Remazol Brilliant Blue R producing anthraquinones and unique tremulane sesquiterpenes. RSC Adv 5:66360CrossRefGoogle Scholar
  302. 302.
    Ióca LP, Romminger S, Santos MFC, Bandeira KF, Rodrigues FT, Kossuga MH, Nicacio KJ, Ferreira ELF, Morais-Urano RP, Passos MS, Kohn LK, Arns CW, Sette LD, Berlinck RGS (2016) A strategy for the rapid identification of fungal metabolites and the discovery of the antiviral activity of pyrenocine A and harzianopyridone. Quim Nova 39:720Google Scholar
  303. 303.
    Newmister SA, Gober CM, Romminger S, Yu F, Tripathi A, Parra LLL, Williams RM, Berlinck RGS, Joullié MM, Sherman DH (2016) OxaD: a versatile indolic nitrone synthase from the marine-derived fungus Penicillium oxalicum F30. J Am Chem Soc 138:11176PubMedPubMedCentralCrossRefGoogle Scholar
  304. 304.
    Castro MV, Ióca LP, Williams DE, Costa BZ, Mizuno CM, Santos MFC, Jesus K, Ferreira ELF, Seleghim MHR, Sette LD, Pereira-Filho ER, Ferreira AG, Gonçalves NS, Santos RA, Patrick BO, Andersen RJ, Berlinck RGS (2016) Condensation of macrocyclic polyketides produced by Penicillium sp. DRF2 with mercaptopyruvate represents a new fungal detoxification pathway. J Nat Prod 79:1668PubMedCrossRefGoogle Scholar
  305. 305.
    Nicacio KJ, Ióca LP, Fróes AM, Leomil L, Appolinario LR, Thompson CC, Thompson FL, Ferreira AG, Williams DE, Andersen RJ, Eustaquio AS, Berlinck RGS (2017) Cultures of the marine bacterium Pseudovibrio denitrificans Ab134 produce bromotyrosine-derived alkaloids previously only isolated from marine sponges. J Nat Prod 80:235PubMedCrossRefGoogle Scholar
  306. 306.
    Kuroda Y, Nicacio KJ, Silva-Jr IA, Leger PR, Chang S, Gubiani JR, Deflon VM, Nagashima N, Rode A, Blackford K, Ferreira AG, Sette LD, Williams DE, Andersen RJ, Jancar S, Berlinck RGS, Sarpong R (2018) Isolation, synthesis and bioactivity studies of phomactin terpenoids. Nat Chem. 10:938Google Scholar
  307. 307.
    Duetz WA (2007) Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. Trends Microbiol 15:469PubMedCrossRefGoogle Scholar
  308. 308.
    Siebenberg S, Bapat PM, Lantz AE, Gust B, Heide L (2010) Reducing the variability of antibiotic production in Streptomyces by cultivation in 24-square deepwell plates. J Biosci Bioeng 109:230PubMedCrossRefGoogle Scholar
  309. 309.
    Schäpper D, Stocks SM, Szita N, Lantz AE, Gernaey KV (2010) Development of a single-use microbioreactor for cultivation of microorganisms. Chem Eng J 160:891CrossRefGoogle Scholar
  310. 310.
    Klöckner W, Büchs J (2012) Advances in shaking technologies. Trends Biotechnol 30:307PubMedCrossRefGoogle Scholar
  311. 311.
    Tan J, Chu J, Hao Y, Guo Y, Zhuang Y, Zhang S (2013) High-throughput system for screening of cephalosporin C high-yield strain by 48-deep-well microtiter plates. Appl Biochem Biotechnol 169:1683PubMedCrossRefGoogle Scholar
  312. 312.
    Watrous JD, Dorrestein PC (2011) Imaging mass spectrometry in microbiology (perspective). Nat Rev Microbiol 9:683PubMedPubMedCentralCrossRefGoogle Scholar
  313. 313.
    Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci USA 109:E1743PubMedCrossRefGoogle Scholar
  314. 314.
    Zahn JA, Higgs RE, Hilton MD (2001) Use of direct-infusion electrospray mass spectrometry to guide empirical development of improved conditions for expression of secondary metabolites from Actinomycetes. Appl Environ Microbiol 67:377Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Darlon Irineu Bernardi
    • 1
  • Fernanda Oliveira das Chagas
    • 2
  • Afif Felix Monteiro
    • 1
  • Gabriel Franco dos Santos
    • 1
  • Roberto Gomes de Souza Berlinck
    • 1
    Email author
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Instituto de Pesquisa de Produtos Naturais Walter MorsUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations