Advertisement

iStim. A New Portable Device for Interoceptive Stimulation

  • Daniele Di Lernia
  • Giuseppe Riva
  • Pietro Cipresso
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 253)

Abstract

The sense of the physiological condition of the entire organism (i.e. interoception) represents a fundamental perception that serves a correct and balanced functioning of the human body. Interoceptive information constitutes a core element in a variety of psycho-physiological systems and processes; therefore the possibility to consistently stimulate the interoceptive system with specifically targeted inputs has a fundamental value both in assessing and clinical settings. The article illustrates a new technological portable device able to delivered precise interoceptive parasympathetic stimuli to C-T afferents connected to the lamina I spinothalamocortical system. Interoceptive stimuli can be programmed in a variety of parameters, ranging from continuous stimulation to modulation of frequency and variance. Implications and possible applications are discussed in both assessing protocols and clinical treatments as well.

Keywords

Interoception Interoceptive stimulation C-Touch C-fibers Affective touch 

Notes

Author Contributions

Conceptualization, D.D.L.; Writing – Original Draft, D.D.L; Writing – Review & Editing, G.R., and P.C.; Hardware and software development: D.D.L.; Supervision G.R., and P.C.

References

  1. 1.
    Craig, A.D.: Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13(4), 500–505 (2003)CrossRefGoogle Scholar
  2. 2.
    Cervero, F., Janig, W.: Visceral nociceptors: a new world order? Trends Neurosci. 15(10), 374–378 (1992)CrossRefGoogle Scholar
  3. 3.
    Mense, S., Meyer, H.: Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol. 363, 403–417 (1985)CrossRefGoogle Scholar
  4. 4.
    Wilson, L.B., Andrew, D., Craig, A.D.: Activation of spinobulbar lamina I neurons by static muscle contraction. J. Neurophysiol. 87(3), 1641–1645 (2002)CrossRefGoogle Scholar
  5. 5.
    Craig, A.D.: How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3(8), 655–666 (2002)CrossRefGoogle Scholar
  6. 6.
    Iggo, A.: Cutaneous mechanoreceptors with afferent C fibres. J Physiol. 152, 337–353 (1960)CrossRefGoogle Scholar
  7. 7.
    Gordon, I., et al.: Brain mechanisms for processing affective touch. Hum. Brain Mapp. 34(4), 914–922 (2013)CrossRefGoogle Scholar
  8. 8.
    Craig, A.D.: Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 364(1525), 1933–1942 (2009)CrossRefGoogle Scholar
  9. 9.
    Di Lernia, D., Serino, S., Riva, G.: Pain in the body. Altered interoception in chronic pain conditions: a systematic review. Neurosci. Biobehav. Rev. 71, 328–341 (2016)CrossRefGoogle Scholar
  10. 10.
    Gaudio, S., et al.: Altered resting state functional connectivity of anterior cingulate cortex in drug naive adolescents at the earliest stages of Anorexia Nervosa. Sci. Rep. 5, 10818 (2015)CrossRefGoogle Scholar
  11. 11.
    Gaudio, S., et al.: White matter abnormalities in treatment-naive adolescents at the earliest stages of Anorexia Nervosa: a diffusion tensor imaging study. Psychiatry Res. 266, 138–145 (2017)CrossRefGoogle Scholar
  12. 12.
    Kerr, K.L., et al.: Altered insula activity during visceral interoception in weight-restored patients with Anorexia Nervosa. Neuropsychopharmacology 41(2), 521–528 (2016)CrossRefGoogle Scholar
  13. 13.
    Wierenga, C.E., et al.: Hunger does not motivate reward in women remitted from Anorexia Nervosa. Biol Psychiatry 77(7), 642–652 (2015)CrossRefGoogle Scholar
  14. 14.
    Dunn, B.D., et al.: Can you feel the beat? Interoceptive awareness is an interactive function of anxiety- and depression-specific symptom dimensions. Behav Res Ther. 48(11), 1133–1138 (2010)CrossRefGoogle Scholar
  15. 15.
    Pollatos, O., Traut-Mattausch, E., Schandry, R.: Differential effects of anxiety and depression on interoceptive accuracy. Depress Anxiety 26(2), 167–173 (2009)CrossRefGoogle Scholar
  16. 16.
    Sliz, D., Hayley, S.: Major depressive disorder and alterations in insular cortical activity: a review of current functional magnetic imaging research. Front Hum. Neurosci. 6, 323 (2012)CrossRefGoogle Scholar
  17. 17.
    Sprengelmeyer, R., et al.: The insular cortex and the neuroanatomy of major depression. J. Affect. Disord. 133(1–2), 120–127 (2011)CrossRefGoogle Scholar
  18. 18.
    Stephan, K.E., et al.: Allostatic self-efficacy: a metacognitive theory of Dyshomeostasis-induced fatigue and depression. Front. Hum. Neurosci. 10, 550 (2016)CrossRefGoogle Scholar
  19. 19.
    Stratmann, M., et al.: Insular and hippocampal gray matter volume reductions in patients with major depressive disorder. PLoS One 9(7), e102692 (2014)CrossRefGoogle Scholar
  20. 20.
    Wiebking, C., et al.: Interoception in insula subregions as a possible state marker for depression-an exploratory fMRI study investigating healthy, depressed and remitted participants. Front. Behav. Neurosci. 9, 82 (2015)CrossRefGoogle Scholar
  21. 21.
    Naqvi, N.H., Bechara, A.: The hidden island of addiction: the insula. Trends Neurosci. 32(1), 56–67 (2009)CrossRefGoogle Scholar
  22. 22.
    Verdejo-Garcia, A., Clark, L., Dunn, B.D.: The role of interoception in addiction: a critical review. Neurosci. Biobehav. Rev. 36(8), 1857–1869 (2012)CrossRefGoogle Scholar
  23. 23.
    Hughes, K.C., Shin, L.M.: Functional neuroimaging studies of post-traumatic stress disorder. Expert Rev. Neurother. 11(2), 275–285 (2011)CrossRefGoogle Scholar
  24. 24.
    Chen, M.C., et al.: Increased insula coactivation with salience networks in insomnia. Biol. Psychol. 97, 1–8 (2014)CrossRefGoogle Scholar
  25. 25.
    Chatterjee, S.S., Mitra, S.: “I Do Not Exist”—Cotard syndrome in insular cortex atrophy. Biol. Psychiat. 77(11), e52–e53 (2015)CrossRefGoogle Scholar
  26. 26.
    Gorka, S.M., et al.: Insula response to unpredictable and predictable aversiveness in individuals with panic disorder and comorbid depression. Biol. Mood Anxiety Disord. 4, 9 (2014)CrossRefGoogle Scholar
  27. 27.
    Segerdahl, A.R., et al.: The dorsal posterior insula subserves a fundamental role in human pain. Nat. Neurosci. 18(4), 499–500 (2015)CrossRefGoogle Scholar
  28. 28.
    Starr, C.J., et al.: Roles of the insular cortex in the modulation of pain: insights from brain lesions. J. Neurosci. 29(9), 2684–2694 (2009)CrossRefGoogle Scholar
  29. 29.
    Olausson, H., Wessberg, J., Morrison, I., McGlone, F. (eds.): Affective Touch and the Neurophysiology of CT Afferents. Springer, New York (2016).  https://doi.org/10.1007/978-1-4939-6418-5CrossRefGoogle Scholar
  30. 30.
    Olausson, H., et al.: Unmyelinated tactile afferents signal touch and project to insular cortex. Nat. Neurosci. 5(9), 900–904 (2002)CrossRefGoogle Scholar
  31. 31.
    Crucianelli, L., et al.: Bodily pleasure matters: velocity of touch modulates body ownership during the rubber hand illusion. Front Psychol. 4, 703 (2013)CrossRefGoogle Scholar
  32. 32.
    Crucianelli, L., et al.: The perception of affective touch in Anorexia Nervosa. Psychiatry Res. 239, 72–78 (2016)CrossRefGoogle Scholar
  33. 33.
    Ackerley, R., et al.: Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. J. Neurosci. 34(8), 2879–2883 (2014)CrossRefGoogle Scholar
  34. 34.
    Ogden, R.S., et al.: The effect of pain and the anticipation of pain on temporal perception: a role for attention and arousal. Cogn. Emot. 29(5), 910–922 (2015)CrossRefGoogle Scholar
  35. 35.
    Ogden, R.S., et al.: Stroke me for longer this touch feels too short: the effect of pleasant touch on temporal perception. Conscious Cogn. 36, 306–313 (2015)CrossRefGoogle Scholar
  36. 36.
    Vallbo, A.B., Olausson, H., Wessberg, J.: Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J. Neurophysiol. 81(6), 2753–2763 (1999)CrossRefGoogle Scholar
  37. 37.
    Ackerley, R., et al.: Touch perceptions across skin sites: differences between sensitivity, direction discrimination and pleasantness. Front Behav. Neurosci. 8, 54 (2014)Google Scholar
  38. 38.
    McGlone, F., Wessberg, J., Olausson, H.: Discriminative and affective touch: sensing and feeling. Neuron 82(4), 737–755 (2014)CrossRefGoogle Scholar
  39. 39.
    Wessberg, J., et al.: Receptive field properties of unmyelinated tactile afferents in the human skin. J. Neurophysiol. 89(3), 1567–1575 (2003)CrossRefGoogle Scholar
  40. 40.
    Vallbo, A.B., et al.: Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects. J. Physiol. 483(Pt 3), 783–795 (1995)CrossRefGoogle Scholar
  41. 41.
    Macefield, V.G.: Tactile C fibers. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds.) Encyclopedia of Neuroscience. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-29678-2CrossRefGoogle Scholar
  42. 42.
    Nordin, M.: Low-threshold mechanoreceptive and nociceptive units with unmyelinated (C) fibres in the human supraorbital nerve. J. Physiol. 426, 229–240 (1990)CrossRefGoogle Scholar
  43. 43.
    Liljencrantz, J., Olausson, H.: Tactile C fibers and their contributions to pleasant sensations and to tactile allodynia. Front Behav. Neurosci. 8, 37 (2014)CrossRefGoogle Scholar
  44. 44.
    Di Lernia, D., et al.: Feel the time. Time perception as a function of interoceptive processing. Front. Hum. Neurosci. 12, 74 (2018)CrossRefGoogle Scholar
  45. 45.
    Habig, K., et al.: Low threshold unmyelinated mechanoafferents can modulate pain. BMC Neurol. 17(1), 184 (2017)CrossRefGoogle Scholar
  46. 46.
    Serino, S., et al.: The role of age on multisensory bodily experience: an experimental study with a virtual reality full-body illusion. Cyberpsychol. Behav. Soc. Netw. 21(5), 304–310 (2018)CrossRefGoogle Scholar
  47. 47.
    Zanier, E.R., et al.: Virtual reality for traumatic brain injury. Front. Neurol. 9, 345 (2018)CrossRefGoogle Scholar
  48. 48.
    O’Reilly, J.X., et al.: Dissociable effects of surprise and model update in parietal and anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 110(38), E3660–E3669 (2013)CrossRefGoogle Scholar
  49. 49.
    Rosso, I.M., et al.: Insula and anterior cingulate GABA levels in posttraumatic stress disorder: preliminary findings using magnetic resonance spectroscopy. Depress. Anxiety 31(2), 115–123 (2014)CrossRefGoogle Scholar
  50. 50.
    Di Lernia, D., et al.: Ghosts in the machine interoceptive modeling for chronic pain treatment. Front. Neurosci. 10, 314 (2016)CrossRefGoogle Scholar
  51. 51.
    Riva, G., et al.: Embodied medicine: mens sana in corpore virtuale sano. Front. Hum. Neurosci. 11, 120 (2017)CrossRefGoogle Scholar
  52. 52.
    Riva, G., et al.: Positive and transformative technologies for active ageing. Stud. Health Technol. Inform. 220, 308–315 (2016)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversità Cattolica del Sacro CuoreMilanItaly
  2. 2.Applied Technology for Neuro-Psychology LabIRCCS Istituto Auxologico ItalianoMilanItaly

Personalised recommendations