Exploratory Factor Analysis, Theory Generation, and Scientific Method

  • Brian D. HaigEmail author
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 45)


This Chapter examines the methodological foundations of exploratory factor analysis (EFA) and suggests that it is properly construed as a method for generating explanatory theories. In the first half of the chapter, it is argued that EFA should be understood as an abductive method of theory generation that exploits an important precept of scientific inference known as the principle of the common cause. This characterization of the inferential nature of EFA coheres well with its interpretation as a latent variable method. The second half of the chapter outlines a broad theory of scientific method in which abductive reasoning figures prominently. It then discusses a number of methodological features of EFA in the light of that method. It is concluded that EFA, as a useful method of theory generation that can be profitably employed in tandem with confirmatory factor analysis and other methods of theory evaluation.


  1. Arntzenius, F. (1993). The common cause principle. Philosophy of Science Association, 1992(2), 227–237.Google Scholar
  2. Carruthers, P. (2002). The roots of scientific reasoning: Infancy, modularity, and the art of tracking. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 73–95). Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  3. Cattell, R. B. (1978). The scientific use of factor analysis in the behavioral and life sciences. New York, NY: Plenum Press.CrossRefGoogle Scholar
  4. Duhem, P. (1954). The aim and structure of physical theory (2nd ed., P. P. Weiner, Trans.). Princeton, NJ: Princeton University Press.Google Scholar
  5. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299.CrossRefGoogle Scholar
  6. Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York, NY: Basic Books.Google Scholar
  7. Giere, R. N. (1983). Testing theoretical hypotheses. In J. Earman (Ed.), Testing scientific theories (pp. 269–298). Minneapolis, MN: University of Minnesota Press.Google Scholar
  8. Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  9. Haig, B. D. (1987). Scientific problems and the conduct of research. Educational Philosophy and Theory, 19, 22–32.CrossRefGoogle Scholar
  10. Haig, B. D. (2005). An abductive theory of scientific method. Psychological Methods, 10, 371–388.CrossRefGoogle Scholar
  11. Harré, R. (1976). The constructive role of models. In L. Collins (Ed.), The use of models in the social sciences (pp. 16–43). London, England: Tavistock.Google Scholar
  12. Hartley, R. E. (1954). Two kinds of factor analysis. Psychometrika, 19, 195–203.CrossRefGoogle Scholar
  13. Hempel, C. G. (1966). Philosophy of natural science. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  14. Hooker, C. A. (1987). A realistic theory of science. New York, NY: State University of New York Press.Google Scholar
  15. Josephson, J. R., & Josephson, S. G. (1994). Abductive inference: Computation, philosophy, technology. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  16. Kaplan, D. (2000). Structural equation modeling: Foundations and extensions. Thousand Oaks, CA: Sage.Google Scholar
  17. Kim, J.-O., & Mueller, C. W. (1978). Introduction to factor analysis. Beverly Hills, CA: Sage.CrossRefGoogle Scholar
  18. Laudan, L. (1981). Science and hypothesis. Dordrecht, The Netherlands: Reidel.CrossRefGoogle Scholar
  19. Lykken, D. T. (1971). Multiple factor analysis and personality research. Journal of Experimental Research in Personality, 5, 161–170.Google Scholar
  20. Magnani, L. (2001). Abduction, reason and science: Processes of discovery and explanation. New York: Kluwer/Plenum.CrossRefGoogle Scholar
  21. McArdle, J. J. (1996). Current directions in structural factor analysis. Current Directions in Psychological Science, 5, 11–18.CrossRefGoogle Scholar
  22. McDonald, R. P., & Mulaik, S. A. (1979). Determinacy of common factors: A nontechnical review. Psychological Bulletin, 86, 297–306.CrossRefGoogle Scholar
  23. McMullin, E. (1983). Values in science. In P. Asquith & T. Nickles (Eds.), Philosophy of Science Association 1982 (Vol. 2, pp. 3–25). East Lansing, MI: Philosophy of Science Association.Google Scholar
  24. McMullin, E. (1995). Underdetermination. The Journal of Medicine and Philosophy, 20, 233–252.CrossRefGoogle Scholar
  25. Mulaik, S. A. (1987). A brief history of the philosophical foundations of exploratory factor analysis. Multivariate Behavioral Research, 22, 267–305.CrossRefGoogle Scholar
  26. Mulaik, S. A., & McDonald, R. P. (1978). The effect of additional variables on factor indeterminacy in models with a single common factor. Psychometrika, 43, 177–192.CrossRefGoogle Scholar
  27. Mulaik, S. A., & Millsap, R. E. (2000). Doing the four-step right. Structural Equation Modeling, 7, 36–73.CrossRefGoogle Scholar
  28. Mumford, S. (1998). Dispositions. Oxford, UK: Oxford University Press.Google Scholar
  29. Nickles, T. (1981). What is a problem that we might solve it? Synthese, 47, 85–118.CrossRefGoogle Scholar
  30. Peirce, C. S. (1931–1958). The collected papers of Charles Sanders Peirce, vols. 1–8. C. Hartshorne & P. Weiss (Eds. Vol. 1–6), & A. W. Burks (Ed., Vol. 7–8). Cambridge, MA: Harvard University Press.Google Scholar
  31. Reichenbach, H. (1956). The direction of time. Berkeley: University of California Press.Google Scholar
  32. Rodgers, J. L., & Rowe, D. C. (2002). Theory development should begin (but not end) with good empirical fits: A comment on Roberts and Pashler (2000). Psychological Review, 109, 599–604.CrossRefGoogle Scholar
  33. Rorer, L. G. (1991). Some myths of science in psychology. In D. Cicchetti & W. M. Grove (Eds.), Thinking clearly about psychology (Vol. 1, pp. 61–87)., Matters of public interest Minneapolis: University of Minnesota Press.Google Scholar
  34. Rozeboom, W. W. (1961). Ontological induction and the logical typology of scientific variables. Philosophy of Science, 28, 337–377.CrossRefGoogle Scholar
  35. Rozeboom, W. W. (1972). Scientific inference: The myth and the reality. In R. S. Brown & D. J. Brenner (Eds.), Science, psychology, and communication: Essays honoring William Stephenson (pp. 95–118). New York: Teachers College Press.Google Scholar
  36. Rozeboom, W. W. (1973). Dispositions revisited. Philosophy of Science, 40, 59–74.CrossRefGoogle Scholar
  37. Rozeboom, W. W. (1984). Dispositions do explain: Picking up the pieces after Hurricane Walter. Annals of Theoretical Psychology, 1, 205–223.CrossRefGoogle Scholar
  38. Rozeboom, W. W. (1991a). Hyball: A method for subspace-constrained factor rotation. Multivariate Behavioral Research, 26, 163–177.CrossRefGoogle Scholar
  39. Rozeboom, W. W. (1991b). Theory and practice of analytic hyperplane optimization. Multivariate Behavioral Research, 26, 79–97.Google Scholar
  40. Salmon, W. C. (1984). Scientific explanation and the causal structure of the world. Princeton, NJ: Princeton University Press.Google Scholar
  41. Skinner, B. F. (1953). Science and human behavior. New York: The Free Press.Google Scholar
  42. Sober, E. (1982). Dispositions and subjunctive conditionals, or, dormative virtues are no laughing matter. Philosophical Review, 91, 591–596.CrossRefGoogle Scholar
  43. Sober, E. (1988). The principle of the common cause. In J. H. Fetzer (Ed.), Probability and causality (pp. 211–229). Dordrecht, The Netherlands: Reidel.CrossRefGoogle Scholar
  44. Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
  45. Stephenson, W. W. (1961). Scientific creed—1961. Psychological Record, 11, 1–25.CrossRefGoogle Scholar
  46. Strauss, A. (1987). Qualitative analysis for social scientists. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  47. Thagard, P. (1988). Computational philosophy of science. Cambridge, MA: MIT Press.Google Scholar
  48. Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.Google Scholar
  49. Thurstone, L. L. (1947). Multiple-factor analysis (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  50. Tuomela, R. (Ed.). (1978). Dispositions. Dordrecht, The Netherlands: Reidel.Google Scholar
  51. Whitt, L. A. (1992). Indices of theory promise. Philosophy of Science, 59, 612–634.CrossRefGoogle Scholar
  52. Woodward, J. (1989). Data and phenomena. Synthese, 79, 393–472.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations