Advertisement

An Abductive Theory of Scientific Method

  • Brian D. Haig
Chapter
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 45)

Abstract

In this chapter, a broad abductive theory of scientific method is described that has particular relevance for the behavioural sciences. This theory of method assembles a complex of specific strategies and methods that are used in the detection of empirical phenomena and the subsequent construction of explanatory theories. A characterization of the nature of phenomena is given, and the process of their detection is briefly described in terms of a multistage model of data analysis. The construction of explanatory theories is shown to involve their generation through abductive, or explanatory, reasoning, their development through analogical modelling, and their fuller appraisal in terms of judgments of the best of competing explanations. The nature and limits of this theory of method are discussed in the light of relevant developments in scientific methodology.

References

  1. Abrantes, P. (1999). Analogical reasoning and modeling in the sciences. Foundations of Science, 4, 237–270.CrossRefGoogle Scholar
  2. Behrens, J. T., & Yu, C.-H. (2003). Exploratory data analysis. In J. A. Schinka & W. F. Velicer (Eds.), Handbook of psychology (Vol. 2, pp. 33–64). New York, NY: Wiley.Google Scholar
  3. Bogen, J. (2005). Regularities and causality: Generalizations and causal explanations. Studies in the History and Philosophy of Biological and Biomedical Sciences, 36, 397–420.CrossRefGoogle Scholar
  4. Bogen, J., & Woodward, J. (1988). Saving the phenomena. Philosophical Review, 97, 303–352.CrossRefGoogle Scholar
  5. Brush, S. G. (1995). Dynamics of theory change: The role of predictions. Philosophy of Science Association, 1994(2), 133–145.Google Scholar
  6. Campbell, N. R. (1920). Physics: The elements. Cambridge, England: Cambridge University Press.Google Scholar
  7. Carruthers, P. (2002). The roots of scientific reasoning: Infancy, modularity, and the art of tracking. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 73–95). Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  8. Cartwright, N. (1983). How the laws of physics lie. Oxford, England: Oxford University Press.CrossRefGoogle Scholar
  9. Cattell, R. B. (1966). Psychological theory and scientific method. In R. B. Cattell (Ed.), Handbook of multivariate experimental psychology (pp. 1–18). Chicago, IL: Rand McNally.Google Scholar
  10. Chalmers, A. F. (1999). What is this thing called science? (3rd ed.). St. Lucia, Australia: University of Queensland Press.Google Scholar
  11. Chatfield, C. (1985). The initial examination of data. Journal of the Royal Statistical Society, Series A, 148, 214–254.CrossRefGoogle Scholar
  12. Chomsky, N. (1972). Language and mind. New York, NY: Harcourt, Brace, Jovanovich.Google Scholar
  13. Clark, J. M., & Paivio, A. (1989). Observational and theoretical terms in psychology: A cognitive perspective on scientific language. American Psychologist, 44, 500–512.CrossRefGoogle Scholar
  14. Day, T., & Kincaid, H. (1994). Putting inference to the best explanation in its place. Synthese, 98, 271–295.CrossRefGoogle Scholar
  15. Duhem, P. (1954). The aim and structure of physical theory (2nd ed., P. P. Winer, Trans.). Princeton, NJ: Princeton University Press. (Original work published 1914).Google Scholar
  16. Durrant, R., & Haig, B. D. (2001). How to pursue the adaptationist program in psychology. Philosophical Psychology, 14, 357–380.CrossRefGoogle Scholar
  17. Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review, 70, 193–242.CrossRefGoogle Scholar
  18. Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. New York, NY: Chapman & Hall.CrossRefGoogle Scholar
  19. Ehrenberg, A. S. C., & Bound, J. A. (1993). Predictability and prediction. Journal of the Royal Statistical Society: Series B, 156, 167–206.CrossRefGoogle Scholar
  20. Elfin, J. T., & Kite, M. E. (1996). Teaching scientific reasoning through attribution. Teachings of Psychology, 23, 87–91.CrossRefGoogle Scholar
  21. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299.CrossRefGoogle Scholar
  22. Fidell, L. S., & Tabachnick, B. G. (2003). Preparatory data analysis. In J. A. Schinka & W. F. Velicer (Eds.), Handbook of psychology (Vol. 2, pp. 115–121). New York, NY: Wiley.Google Scholar
  23. Franklin, A. (1990). Experiment, right or wrong. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  24. Gage, N. L. (1996). Confronting counsels of despair for the behavioral sciences. Educational Researcher, 25(5–15), 22.Google Scholar
  25. Giere, R. N. (1983). Testing theoretical hypotheses. In J. Earman (Ed.), Testing scientific theories (pp. 269–298). Minneapolis, MN: University of Minnesota Press.Google Scholar
  26. Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  27. Glymour, C. (1980). Theory and evidence. Princeton, NJ: Princeton University Press.Google Scholar
  28. Goffman, E. (1969). The presentation of self in everyday life. London, England: Penguin.Google Scholar
  29. Goldman, A. I. (1986). Epistemology and cognition. Cambridge, MA: Harvard University Press.Google Scholar
  30. Haig, B. D. (1987). Scientific problems and the conduct of research. Educational Philosophy and Theory, 19, 22–32.CrossRefGoogle Scholar
  31. Haig, B. D. (2005). Exploratory factor analysis, theory generation, and scientific method. Multivariate Behavioral Research, 40, 303–329.CrossRefGoogle Scholar
  32. Haig, B. D. (2014). Investigating the psychological world: Scientific method in the behavioral sciences. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  33. Harman, G. (1965). The inference to the best explanation. Philosophical Review, 74, 88–95.CrossRefGoogle Scholar
  34. Harré, R. (1970). The principles of scientific thinking. Chicago, IL: University of Chicago Press.modeling.CrossRefGoogle Scholar
  35. Harré, R. (1976). The constructive role of models. In L. Collins (Ed.), The use of models in the social sciences (pp. 16–43). London, England: Tavistock.Google Scholar
  36. Harré, R. (1988). Where models and analogies really count. International Studies in the Philosophy of Science, 2, 119–133.CrossRefGoogle Scholar
  37. Harré, R., & Secord, P. F. (1972). The explanation of social behavior. Oxford, England: Blackwell.Google Scholar
  38. Hempel, C. (1966). Philosophy of natural science. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  39. Hesse, M. B. (1966). Models and analogies in science. Notre Dame, IN: University of Notre Dame Press.Google Scholar
  40. Josephson, J. R., & Josephson, S. G. (1994). Abductive inference: Computation, philosophy, technology. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  41. Laudan, L. (1977). Progress and its problems. Berkeley, CA: University of California Press.Google Scholar
  42. Laudan, L. (1981). Science and hypothesis. Dordrecht, The Netherlands: Reidel.CrossRefGoogle Scholar
  43. Laudan, L. (1996). Beyond positivism and relativism: Theory, method, and evidence. Berkeley: University of California Press.Google Scholar
  44. Lee, M. D., & Wagenmakers, E. J. (2005). Bayesian statistical inference in psychology: Comment on Trafimow (2003). Psychological Review, 112, 662–668.CrossRefGoogle Scholar
  45. Lindsay, R. M., & Ehrenberg, A. S. C. (1993). The design of replicated studies. American Statistician, 47, 217–228.Google Scholar
  46. Lipton, P. (2004). Inference to the best explanation (2nd ed.). London, England: Routledge.Google Scholar
  47. Lycan, W. G. (1988). Judgement and justification. Cambridge, England: Cambridge University Press.Google Scholar
  48. Magnani, L. (2001). Abduction, reason, and science: Processes of discovery and explanation. New York, NY: Kluwer/Plenum Press.CrossRefGoogle Scholar
  49. Magnani, L. (2009). Abductive cognition: The epistemological and eco-cognitive dimensions of hypothetical reasoning. Berlin, Germany: Springer.CrossRefGoogle Scholar
  50. McGuire, W. J. (1997). Creative hypothesis generating in psychology: Some useful heuristics. Annual Review of Psychology, 48, 1–30.CrossRefGoogle Scholar
  51. Mumford, S. (1998). Dispositions. Oxford, England: Oxford University Press.Google Scholar
  52. Nickles, T. (1981). What is a problem that we might solve it? Synthese, 47, 85–118.CrossRefGoogle Scholar
  53. Nickles, T. (1987). Twixt method and madness. In N. J. Nersessian (Ed.), The process of science (pp. 41–67). Dordrecht, The Netherlands: Martinus Nijhoff.CrossRefGoogle Scholar
  54. Peirce, C. S. (1931–1958). In C. Hartshorne, P. Weiss, & A. Burks (Eds.) Collected papers (Vols. 1–8). Cambridge, MA: Harvard University Press.Google Scholar
  55. Popper, K. R. (1959). The logic of scientific discovery. London, England: Hutchinson.Google Scholar
  56. Preacher, K. J., & MacCallum, R. C. (2003). Repairing Tom Swift’s electric factor analysis machine. Understanding Statistics, 2, 13–43.CrossRefGoogle Scholar
  57. Proctor, R. W., & Capaldi, E. J. (2001). Empirical evaluation and justification of methodologies in psychological science. Psychological Bulletin, 127(759), 772.Google Scholar
  58. Rorer, L. G. (1991). Some myths of science in psychology. In D. Cicchetti & W. M. Grove (Eds.), Thinking clearly about psychology (Vol. 1, pp. 61–87)., Matters of public interest Minneapolis, MN: University of Minnesota Press.Google Scholar
  59. Ross, S. D. (1981). Learning and discovery. New York, NY: Gordon & Breach.Google Scholar
  60. Rozeboom, W. W. (1972). Scientific inference: The myth and the reality. In R. S. Brown & D. J. Brenner (Eds.), Science, psychology, and communication: Essays honoring William Stephenson (pp. 95–118). New York, NY: Teachers College Press.Google Scholar
  61. Rozeboom, W. W. (1999). Good science is abductive, not hypothetico-deductive. In L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there were no significance tests? (pp. 335–391). Hillsdale, NJ: Erlbaum.Google Scholar
  62. Schmidt, F. L. (1992). What do data really mean? Research findings, meta-analysis, and cumulative knowledge in psychology. American Psychologist, 47, 1173–1181.CrossRefGoogle Scholar
  63. Sidman, M. (1960). Tactics of scientific research. New York, NY: Basic Books.Google Scholar
  64. Simon, H. A. (1977). Models of discovery. Dordrecht, the Netherlands: Reidel.CrossRefGoogle Scholar
  65. Skinner, B. F. (1984). Methods and theories in the experimental analysis of behavior. Behavioral and Brain Sciences, 7, 511–546.CrossRefGoogle Scholar
  66. Sohn, D. (1996). Meta-analysis and science. Theory and Psychology, 6, 229–246.CrossRefGoogle Scholar
  67. Stephenson, W. W. (1961). Scientific creed—1961. Psychological Record, 11, 1–25.CrossRefGoogle Scholar
  68. Strauss, A. L. (1987). Qualitative analysis for social scientists. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  69. Thagard, P. (1988). Computational philosophy of science. Cambridge, MA: MIT Press.Google Scholar
  70. Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.Google Scholar
  71. Thagard, P. (2000). Coherence in thought and action. Cambridge, MA: MIT Press.Google Scholar
  72. Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison Wesley.Google Scholar
  73. Walters, J. M., & Gardner, H. (1986). The theory of multiple intelligence: Some issues and answers. In R. J. Sternberg & R. K. Wagner (Eds.), Practical intelligence: Nature and origins of competence in the everyday world (pp. 163–182). Cambridge, England: Cambridge University Press.Google Scholar
  74. Whitt, L. A. (1992). Indices of theory promise. Philosophy of Science, 59, 393–472.CrossRefGoogle Scholar
  75. Wilkinson, L., & The Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54, 594–604.CrossRefGoogle Scholar
  76. Woodward, J. (1989). Data and phenomena. Synthese, 79, 393–472.CrossRefGoogle Scholar
  77. Woodward, J. (2000). Data, phenomena, and reliability. Philosophy of Science, 67(Suppl.), 163–179.CrossRefGoogle Scholar
  78. Woodward, J. (2003). Making things happen. Oxford, England: Oxford University Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations