Advertisement

Abstract

We present accurate results for multi-modal fusion of intra-operative 3D ultrasound and magnetic resonance imaging (MRI) using the publicly available and robust discrete registration approach deeds. After pre-processing the scans to have isotropic voxel sizes of 0.5 mm and a common coordinate system, we run both linear and deformable registration using the self-similarity context metric. We use default parameters that have previously been applied for multi-atlas fusion demonstrating the generalisation of the approach. Transformed landmark locations are obtained by either directly applying the nonlinear warp or fitting a rigid transform with six parameters. The two approaches yield average target registration errors of 1.88 mm and 1.67 mm respectively on the 22 training scans of the CuRIOUS challenge. Optimising the regularisation weight can further improve this to 1.62 mm (within 0.5 mm of the theoretical lower bound). Our findings demonstrate that in contrast to classification and segmentation tasks, multimodal registration can be appropriately handled without designing domain-specific algorithms and without any expert supervision.

Notes

Acknowledgements

We would like to thank the CuRIOUS 2018 organisers for providing this new multimodal dataset to the public.

References

  1. 1.
    Xiao, Y., Fortin, M., Unsgård, G., Rivaz, H., Reinertsen, I.: Retrospective evaluation of cerebral tumors (RESECT): a clinical database of pre-operative MRI and intra-operative ultrasound in low-grade glioma surgeries. Med. Phys. 44(7), 3875–3882 (2017)CrossRefGoogle Scholar
  2. 2.
    Fuerst, B., Wein, W., Müller, M., Navab, N.: Automatic ultrasound-MRI registration for neurosurgery using the 2D and 3D LC2 metric. Med. Image Anal. 18(8), 1312–1319 (2014)CrossRefGoogle Scholar
  3. 3.
    Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40811-3_24CrossRefGoogle Scholar
  4. 4.
    Rivaz, H., Karimaghaloo, Z., Collins, D.L.: Self-similarity weighted mutual information: a new nonrigid image registration metric. Med. Image Anal. 18(2), 343–358 (2014)CrossRefGoogle Scholar
  5. 5.
    Heinrich, M., Jenkinson, M., Brady, M., Schnabel, J.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imag. 32(7), 1239–1248 (2013)CrossRefGoogle Scholar
  6. 6.
    Xu, Z., et al.: Evaluation of six registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63(8), 1563–1572 (2016)CrossRefGoogle Scholar
  7. 7.
    Heinrich, M.P., Oster, J.: MRI whole heart segmentation using discrete nonlinear registration and fast non-local fusion. In: Pop, M. (ed.) STACOM 2017. LNCS, vol. 10663, pp. 233–241. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75541-0_25CrossRefGoogle Scholar
  8. 8.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 5, 698–700 (1987)CrossRefGoogle Scholar
  9. 9.
    Modat, M., Cash, D.M., Daga, P., Winston, G.P., Duncan, J.S., Ourselin, S.: Global image registration using a symmetric block-matching approach. J. Med. Imaging 1(2), 024003 (2014)CrossRefGoogle Scholar
  10. 10.
    Masci, J., Bronstein, M.M., Bronstein, A.M., Schmidhuber, J.: Multimodal similarity-preserving hashing. IEEE Trans. Pattern Anal. Mach. Intell. 36(4), 824–830 (2014)CrossRefGoogle Scholar
  11. 11.
    Blendowski, M., Heinrich, M.P.: 3D-CNNs for deep binary descriptor learning in medical volume data. In: Maier, A., Deserno, T., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2018. I, pp. 23–28. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-662-56537-7_19CrossRefGoogle Scholar
  12. 12.
    Heinrich, M.P., Oktay, O., Bouteldja, N.: OBELISK - one kernel to solve nearly everything: unified 3D binary convolutions for image analysis. In: Medical Imaging with Deep Learning (2018)Google Scholar
  13. 13.
    Ha, I.Y., Wilms, M., Handels, H., Heinrich, M.: Model-based sparse-to-dense image registration for realtime respiratory motion estimation in image-guided interventions. IEEE Trans. Biomed. Eng. (2018). https://doi.org/10.1109/TBME.2018.2837387

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Medical InformaticsUniversity of LübeckLübeckGermany

Personalised recommendations