The Cosmic Impact Hazard

  • David MorrisonEmail author
Part of the Space and Society book series (SPSO)


Recognition of the hazard to life and property from impacts of comets and asteroids is currently leading to technical efforts to understand this hazard, estimate the resulting risk and plan for planetary defense. Public attention has been stimulated by the observed impact of Comet Shoemaker Levy 9 with Jupiter in 1994 and the destructive Earth impacts by small asteroids at Tunguska in 1908 and Chelyabinsk in 2013. The first task, to locate potential impactors, is well advanced, with telescopic discovery and orbit determinations for more than 15,000 near-Earth asteroids made in the past quarter century. No large asteroid has been found on an impact trajectory, but tens of thousands of small asteroids remain undiscovered. The current risk is dominated by a handful of undiscovered asteroids around 1-km diameter and by a much larger number with diameters 100–300 m. The larger task of developing technology to intercept, deflect or disburse any asteroid found to be on a collision course is much less mature. Planetary defense is an international problem, since all parts of the planet are at risk. Although at present, relatively few nations have the technology to contribute directly, broad international support for planetary defense is developing.


Planetary defense Impact hazard Asteroids Spaceguard Tunguska impact Chelyabinsk impact 


  1. Ahrens, T. J., & Harris, A. W. (1992). Deflection and fragmentation of near-Earth asteroids. Nature, 360(6403), 429–433. doi: Scholar
  2. Alenia Spazio SpA. (1995). Beginning the Spaceguard Survey. Vulcano, Italy.
  3. Alvarez, L. W., Alvarez, W., Asaro, F., & Michel, H. V. (1980). Extraterrestrial cause for the cretaceous-tertiary extinction. Science, 208(4448), 1095–1108. doi: Scholar
  4. Artemieva, N. A., & Shuvalov, V. V. (2016). From Tunguska to Chelyabinsk via Jupiter. Annual Review of Earth and Planetary Sciences, 44(1), 37–56. doi: Scholar
  5. Atkinson, H., Tickell, C., & Williams, D. (2000). Report of the Task Force on Potentially Hazardous Near Earth Objects. London.Google Scholar
  6. Belton, M. J. S., Morgan, T. H., Samarasinha, N., & Yeomans, D. K. (Eds.). (2004). Mitigation of Hazardous Comets and Asteroids. Cambridge University Press.Google Scholar
  7. Borovicka, J., Spurny, P., Brown, P. G., Wiegert, P., Kalenda, P., Clark, D., & Shrbeny, L. (2013). The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature, 1–13. doi: Scholar
  8. Boslough, M. B., & Crawford, D. A. (1997). Shoemaker-Levy 9 and plume forming collisions on Earth. In Near-Earth Objects, Annals of the New York Academy of Sciences, Volume 822 (pp. 236–282).CrossRefGoogle Scholar
  9. Bowell, E., & Muinonen, K. (1994). Earth-Crossing Asteroids and Comets: Groundbased Search Strategies. In T. Gehlers (Ed.), Hazards Due to Comets and Asteroids (pp. 149–198). The University of Arizona Press.Google Scholar
  10. Brown, P. G., Assink, J. D., Astiz, L., Blaauw, R., Boslough, M. B., Borovička, J., et al. (2013). A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature, 503(7475), 238–241. doi: Scholar
  11. Canavan, G. H., Solem, J. C., & Rather, J. D. G. (1994). Near-Earth object interception workshop. In T. Gehrels, M. S. Matthews, & A. M. Schumann (Eds.), Hazards due to Comets and Asteroids (pp. 93–124). University of Arizona Press.Google Scholar
  12. Chapman, C. R., & Gaffey, M. J. (1979). Reflectance spectra for 277 asteroids. Asteroids, 655–687.Google Scholar
  13. Chapman, C. R., & Morrison, D. (1994). Impacts on the Earth by asteroids and comets: assessing the hazard. Nature, 367(6458), 33–40. doi: Scholar
  14. Chapman, C. R., Morrison, D., & Zellner, B. (1975). Surface properties of asteroids: A synthesis of polarimetry, radiometry, and spectrophotometry. Icarus, 25(1), 104–130.CrossRefGoogle Scholar
  15. Chesley, S. R., & Spahr, T. B. (2004). Earth Impactors : Orbital Characteristics and Warning Times. In M. Belton, T. Morgan, N. Samarsinha, & D. K. Yeomans (Eds.), Mitigation of Hazardous Comets and Asteroids (pp. 22–37). Cambridge, UK: University Press Cambridge.Google Scholar
  16. Chyba, C. F., Thomas, P. J., & Zahnle, K. J. (1993). The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature, 361(6407), 40–44. doi: Scholar
  17. Gehrels, T., Matthews, M. S., & Schumann, A. M. (Eds.). (1994). Hazards Due to Comets and Asteroids. University of Arizona Press.Google Scholar
  18. Glasstone, S., & Dolan, P. J. (1977). The effects of nuclear weapons. Department of Defense, Washington, DC (USA); Department of Energy, Washington, DC (USA).Google Scholar
  19. Harris, A. W., Canavan, G., Sagan, C., & Ostro, S. (1994). The Deflection Dilemma: Use Vs. Misuse of Technologies for Avoiding Interplanetary Collision Hazards. In T. Gehrels, M. S. Matthews, & A. M. Schumann (Eds.), Hazards due to Comets and Asteroids (pp. 1145–1156).Google Scholar
  20. Harris, A. W., & D’Abramo, G. (2015). The population of near-Earth asteroids. Icarus, 257(May), 302–312. doi: Scholar
  21. Hills, J. G., & Goda, M. P. (1993). The fragmentation of small asteroids in the atmosphere. The Astronomical Journal, 105, 1114–1144.CrossRefGoogle Scholar
  22. Kring, D. A., & Boslough, M. (2014). Chelyabinsk: Portrait of an asteroid airburst. Physics Today, 67(9).CrossRefGoogle Scholar
  23. Mainzer, A., Bauer, J., Grav, T., Masiero, J., Cutri, R. M., Dailey, J., et al. (2011). Preliminary Results from Neowise: an Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science. The Astrophysical Journal, 731(1), 53. doi: Scholar
  24. Mathias, D. L., Wheeler, L. F., & Dotson, J. L. (2017). A Probabilistic Asteroid Impact Risk Model: Assessment of Sub-300 m Impacts. Icarus, 289, 106–119. doi: Scholar
  25. Morrison, D. (1977). Asteroid sizes and albedos. Icarus, 31(2), 185–220.CrossRefGoogle Scholar
  26. Morrison, D. (1992). The Spaceguard Survey Report of the NASA International Near-Earth-Object Detection Workshop. NASA.Google Scholar
  27. Morrison, D. (2018). Tunguska Workshop: Applying New Tools to Understand the 1908 Asteroid Impact. NASA Technical Memorandum.Google Scholar
  28. Morrison, D., Chapman, C. R., & Slovic, P. (1994). The Impact Hazard. In T. Gehrels (Ed.), Hazards Due to Comets and Asteroids (pp. 149–198). University of Arizona Press.Google Scholar
  29. Morrison, D., Chapman, C. R., Steele, R. D., & Binzel, R. P. (2004). Impacts and the Public: Communicating the Nature of the Impact Hazard. In M. J. S. Belton, T. H. Morgan, N. H. Samarasinha, & D. K. Yeomans (Eds.), Mitigation of Hazardous Comets and Asteroids. Cambridge University Press.Google Scholar
  30. Morrison, D., & Venkatapathy, E. (2017). Asteroid Generated Tsunami: Summary of NASA/NOAA Workshop.
  31. Nuckolls, J. (1995). Proceedings of the Planetary Defense Workshop, Lawrence Livermore National Laboratory, California, May 22-26, 1995. Lawrence Livermore National Lab., CA (US).Google Scholar
  32. Oplk, E. J. (1958). On the catastrophic effect of collisions with celestial bodies. Irish Astronomical Journal, 5, 34.Google Scholar
  33. Ostro, S. J., & Giorgini, J. D. (2004). The role of radar in predicting and preventing asteroid and comet collisions with Earth. Mitigation of Hazardous Comets and Asteroids, 38.Google Scholar
  34. Popova, O. P., Jenniskens, P., Emel’yanenko, V., Kartashova, A., Biryukov, E., Khaibrakhmanov, S., et al. (2013). Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization. Science, 342(6162), 1069–1073. doi: Scholar
  35. Powell, J. L. (1998). Night Comes to the Cretaceous: Dinosaur Extinction and the Transformation of Modern Geology. W.H. Freeman.
  36. Remo, J. L. (1997). Near Earth Objects, the United Nations International Conference. Annals of the New York Academy of Sciences, 822.Google Scholar
  37. Rumpf, C. M., Lewis, H. G., & Atkinson, P. M. (2017). Asteroid Impact Effects And Their Immediate Hazards For Human Populations. Geophysical Research Letters, 44(March), 3433–3440. doi: Scholar
  38. Sagan, C., & Ostro, S. J. (1994). Dangers of asteroid deflection. Nature, 368(6471), 501.CrossRefGoogle Scholar
  39. Sekanina, Z. (1998). Evidence for asteroidal origin of the Tunguska object. Planetary and space science, 46(2–3), 191–204.CrossRefGoogle Scholar
  40. Shoemaker, E. M. (1983). Asteroid and comet bombardment of the Earth. Annual Review of Earth and Planetary Sciences, 11(1), 461–494.CrossRefGoogle Scholar
  41. Simonenko, V. (1995). Space Protection of the Earth: Concepts and Approaches to the Development. Institute of Technical Physics, Snezhinsk, Chelyabinsk Region, Russia.Google Scholar
  42. Stokes, G., Barbee, B. W., Bottke, W. F., Yeomans, D. K., Buie, M. W., Chodas, P. W., et al. (2017). Report of the Near-Earth Object Science Definition Team: Update to Determine the Feasibility of Enhancing the Search and Characterization of NEOs. NASA, Science Mission Directorate, Planetary Science Division.Google Scholar
  43. Stokes, G., Yeomans, D., Bottke, W. F., Jewitt, D., Chesley, S. R., Kelso, T., et al. (2003). Study to determine the feasibility of extending the search for near-Earth objects to smaller limiting diameters. Report of the Near-Earth Object Science Definition Team (Vol. 32). Washington D.C.Google Scholar
  44. Toon, O. B., Zahnle, K., Morrison, D., Turco, R. P., & Covey, C. (1997). Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics, 35(1), 41–78. doi: Scholar
  45. Wheeler, L. F., Register, P. J., & Mathias, D. L. (2017). A fragment-cloud model for asteroid breakup and atmospheric energy deposition. Icarus, 295, 149–169.CrossRefGoogle Scholar
  46. Yeomans, D. (2012). Near-Earth Objects Finding Them Before They Find Us. Princeton University Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.NASA Ames Research CenterMountain ViewUSA

Personalised recommendations