Advertisement

Ramsey Model

  • Burkhard Heer
Chapter
Part of the Springer Texts in Business and Economics book series (STBE)

Abstract

This chapter presents the Ramsey model. It is the benchmark model for most dynamic macroeconomic models that study growth and business cycle phenomena. We first study the deterministic Ramsey model in which the total factor productivity is certain. We contrast the effects of a once-and-for-all change with those of a temporary change in productivity on investment, output, and labor supply. In addition, we distinguish the effects of this change when it is known in advance or only observed at the beginning of the period, t, when the shock occurs. Finally, we also introduce uncertainty with respect to the technology level and discuss the real business cycle (RBC) model.

References

  1. Attanasio, O., & Low, H. (2004). Estimating Euler equations. Review of Economic Dynamics, 7, 406–435.CrossRefGoogle Scholar
  2. Auerbach, A. J., & Kotlikoff, L. (1987). Dynamic fiscal policy. New York: Cambridge University Press.Google Scholar
  3. Azariadis, C. (1993). Intertemporal macroeconomics. Oxford: Blackwell.Google Scholar
  4. Basu, S., Fernald, J. G., & Kimball, M. S. (2006). Are technology improvements contractionary?. American Economic Review, 96, 1418–1448.CrossRefGoogle Scholar
  5. Baxter, M., & King, R. G. (1999). Measuring business cycles: Approximate band-pass filters for economic time series. Review of Economics and Statistics, 81(4), 575–593.CrossRefGoogle Scholar
  6. Beaudry, P., & Portier, F. (2004). An exploration into Pigou’s theory of cycles. Journal of Monetary Economics, 51(6), 1183–1216.CrossRefGoogle Scholar
  7. Beaudry, P., & Portier, F. (2006). Stock prices, news, and economic fluctuations. American Economic Review, 596(4), 1293–1307.CrossRefGoogle Scholar
  8. Blanchard, O. J., & Kahn, C. M. (1980). The solution of linear difference models under rational expectations. Econometrica, 48, 1305–1311.CrossRefGoogle Scholar
  9. Cass, D. (1965). Optimum growth in an aggregative model of capital accumulation. Review of Economic Studies, 32, 233–240.CrossRefGoogle Scholar
  10. Cogley, T., & Nasan, J. M. (1995). Output dynamics in real-business-cycle models. American Economic Review, 85, 492–511.Google Scholar
  11. Cooley, T. F. (1995). Frontiers of business cycle research. Princeton: Princeton University Press.Google Scholar
  12. Cooley, T. F., & Prescott, E. C. (1995). Economic growth and business cycles. In T. F. Cooley (Ed.), Frontiers of business cycle research (pp. 1–64). Princeton: Princeton University Press.Google Scholar
  13. deJong, D. N., & Dave, C. (2011). Structual macroeconometrics (2nd ed.). Princeton: Princeton University Press.Google Scholar
  14. Galí, J. (1999). Technology, employment, and the business cycle: Do technology shocks explain aggregate fluctuations?. American Economic Review, 89, 249–271.CrossRefGoogle Scholar
  15. Gandolfo, G. (2009). Economic dynamics. Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  16. Heer, B., & Maußner, A. (2009). Dynamic general equilibrium modeling: Computational methods and applications (2nd ed.). Heidelberg: Springer.CrossRefGoogle Scholar
  17. Heer, B., Maußner, A., & Süssmuth, B. (2018). Cyclical asset returns in the consumption and investment goods sector. Review of Economic Dynamics, 28, 51–70.CrossRefGoogle Scholar
  18. Heer, B., & Schubert, S. F. (2012). Unemployment and debt dynamics in a highly indebted small open economy. Journal of International Money and Finance, 31, 1392–1413.CrossRefGoogle Scholar
  19. Hodrick, R. J., & Prescott, E. C. (1997). Postwar US business cycles: An empirical investigation. Journal of Money, Credit, and Banking, 29, 1–16.CrossRefGoogle Scholar
  20. Jermann, U. J. (1998). Asset pricing in production economies. Journal of Monetary Economics, 41, 257–275.CrossRefGoogle Scholar
  21. Judd, K. L. (1998). Numerical methods in economics. Cambridge: MIT Press.Google Scholar
  22. King, R. G., & Watson, M. W. (2002). System reduction and solution algorithms for singular difference systems under rational expectations. Computational Economics, 20, 57–86.CrossRefGoogle Scholar
  23. Koopmans, T. C. (1965). On the concept of optimal economic growth. In The econometric approach to development planning (pp. 225–287). Amsterdam: North-Holland.Google Scholar
  24. Kydland, F. E., & Prescott, E. C. (1982). Time to build and agregate fluctuations. Econometrica, 50, 1345–1370.CrossRefGoogle Scholar
  25. Long, J. B., & Plosser, C. I. (1983). Real business cycles. Journal of Political Economy, 91, 39–69.CrossRefGoogle Scholar
  26. McCandless, G. (2008). The ABCs of RBCs. Cambridge: Harvard University Press.Google Scholar
  27. McGrattan, E. R., & Prescott, E. C. (2014). A reassessment of real business cycle theory. American Economic Review, 104, 177–182.CrossRefGoogle Scholar
  28. Mehra, R., & Prescott, E. C. (1985). The equity premium: a puzzle. Journal of Monetary Economics, 15, 145–161.CrossRefGoogle Scholar
  29. Miranda, M. J., & Fackler, P. L. (2002). Applied computational economics and finance. Cambridge: MIT Press.Google Scholar
  30. Muth, J. F. (1961). Rational expectations and the theory of price movements. Econometrica, 29, 315–335.CrossRefGoogle Scholar
  31. Prescott, E. C. (1986). Theory ahead of business-cycle measurement. Carnegie-Rochester Conference on Public Policy, 24, 11–44.CrossRefGoogle Scholar
  32. Ramsey, F. (1928). A mathematical theory of saving. Economic Journal, 38, 543–559.CrossRefGoogle Scholar
  33. Ravn, M. O., & Uhlig, H. (2001). On adjusting the HP-filter for the frequency of observations (CEPR Discussion Paper, 2858).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Burkhard Heer
    • 1
  1. 1.Department of Business and EconomicsUniversity of AugsburgAugsburgGermany

Personalised recommendations