Advertisement

Improved Breast Mass Segmentation in Mammograms with Conditional Residual U-Net

  • Heyi LiEmail author
  • Dongdong Chen
  • William H. Nailon
  • Mike E. Davies
  • David Laurenson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11040)

Abstract

We explore the use of deep learning for breast mass segmentation in mammograms. By integrating the merits of residual learning and probabilistic graphical modelling with standard U-Net, we propose a new deep network, Conditional Residual U-Net (CRU-Net), to improve the U-Net segmentation performance. Benefiting from the advantage of probabilistic graphical modelling in the pixel-level labelling, and the structure insights of a deep residual network in the feature extraction, the CRU-Net provides excellent mass segmentation performance. Evaluations based on INbreast and DDSM-BCRP datasets demonstrate that the CRU-Net achieves the best mass segmentation performance compared to the state-of-art methodologies. Moreover, neither tedious pre-processing nor post-processing techniques are not required in our algorithm.

Keywords

Mammogram mass segmentation Structured prediction Deep residual learning 

References

  1. 1.
    Ball, J.E., Bruce, L.M.: Digital mammographic computer aided diagnosis (CAD) using adaptive level set segmentation. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 4973–4978. IEEE (2007)Google Scholar
  2. 2.
    Beller, M., Stotzka, R., Müller, T.O., Gemmeke, H.: An example-based system to support the segmentation of stellate lesions. In: Meinzer, H.P., Handels, H., Horsch, A., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2005. Springer, Heidelberg (2005).  https://doi.org/10.1007/3-540-26431-0_97CrossRefGoogle Scholar
  3. 3.
    Cardoso, J.S., Domingues, I., Oliveira, H.P.: Closed shortest path in the original coordinates with an application to breast cancer. Int. J. Pattern Recogn. Artif. Intell. 29(01), 1555002 (2015)CrossRefGoogle Scholar
  4. 4.
    Carneiro, G., Zheng, Y., Xing, F., Yang, L.: Review of deep learning methods in mammography, cardiovascular, and microscopy image analysis. In: Lu, L., Zheng, Y., Carneiro, G., Yang, L. (eds.) Deep Learning and Convolutional Neural Networks for Medical Image Computing. ACVPR, pp. 11–32. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-42999-1_2CrossRefGoogle Scholar
  5. 5.
    Chen, D., Lv, J., Yi, Z.: Graph regularized restricted Boltzmann machine. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2651–2659 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dhungel, N., Carneiro, G., Bradley, A.P.: Deep learning and structured prediction for the segmentation of mass in Mammograms. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 605–612. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24553-9_74CrossRefGoogle Scholar
  7. 7.
    Dhungel, N., Carneiro, G., Bradley, A.P.: Deep structured learning for mass segmentation from mammograms. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 2950–2954. IEEE (2015)Google Scholar
  8. 8.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  9. 9.
    Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P.: The digital database for screening mammography. In: Digital Mammography, pp. 431–434 (2000)Google Scholar
  10. 10.
    Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in Neural Information Processing Systems, pp. 109–117 (2011)Google Scholar
  11. 11.
    Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: INbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)CrossRefGoogle Scholar
  12. 12.
    Oliver, A., Freixenet, J., Marti, J., Perez, E., Pont, J., Denton, E.R., Zwiggelaar, R.: A review of automatic mass detection and segmentation in mammographic images. Med. Image Anal. 14(2), 87–110 (2010)CrossRefGoogle Scholar
  13. 13.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  14. 14.
    Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1529–1537 (2015)Google Scholar
  15. 15.
    Zhu, W., Xiang, X., Tran, T.D., Hager, G.D., Xie, X.: Adversarial deep structured nets for mass segmentation from Mammograms. arXiv preprint arXiv:1710.09288 (2017)

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Heyi Li
    • 1
    Email author
  • Dongdong Chen
    • 1
  • William H. Nailon
    • 2
  • Mike E. Davies
    • 1
  • David Laurenson
    • 1
  1. 1.Institute for Digital CommunicationsUniversity of EdinburghEdinburghUK
  2. 2.Oncology Physics Department, Edinburgh Cancer CentreWestern General HospitalEdinburghUK

Personalised recommendations