Super Resolution of Cardiac Cine MRI Sequences Using Deep Learning

  • Nicolas BastyEmail author
  • Vicente Grau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11040)


Cardiac cine MRI facilitates structural and functional analysis of the heart through the dynamic aspect of the sequences. Clinical acquisitions consist of sparse 2D images instead of 3D volumes, taken at landmark points of the ECG to cover the whole heartbeat. A stack of short axis images and a small number of long axis views are generally acquired. Efforts have been made to accelerate acquisitions at the acquisition stage as well as at post-processing. A major part of current research in medical image processing focuses on deep learning approaches driven by large datasets. However, most of those methods leave out the dynamic aspect of temporal data and treat frames of cine MRI sequences individually. We propose a super resolution network based on the U-net and long short-term memory layers to exploit the temporal aspect of the dynamic cardiac cine MRI data. When given a sequence of low resolution long axis images, our method is able to render a high resolution sequence. Results on synthetic data simulating a stack of short axis images show quantitative and qualitative improvements over traditional interpolation methods or the equivalent machine learning method using a single frame, including the ability of the network to recover important image features such as the apex.


Super-resolution Cardiac cine MRI Deep learning 



NMB acknowledges the support of the RCUK Digital Economy Programme grant number EP/G036861/1 (Oxford Centre for Doctoral Training in Healthcare Innovation).


  1. 1.
    Petersen, S.E., et al.: UK Biobank’s cardiovascular magnetic resonance protocol (2015)Google Scholar
  2. 2.
    Kramer, C.M., Barkhausen, J., Flamm, S.D., Kim, R.J., Nagel, E.: Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J. Cardiovasc. Magn. Reson. 10(1), 35 (2008)CrossRefGoogle Scholar
  3. 3.
    Ferreira, P.F., Gatehouse, P.D., Mohiaddin, R.H., Firmin, D.N.: Cardiovascular magnetic resonance artefacts. J. Cardiovasc. Magn. Reson. 15(1), 41 (2013)CrossRefGoogle Scholar
  4. 4.
    Scheffler, K., Lehnhardt, S.: Principles and applications of balanced SSFP techniques. Eur. Radiol. 13(11), 2409–2418 (2003)CrossRefGoogle Scholar
  5. 5.
    Caballero, J., Price, A.N., Rueckert, D., Hajnal, J.V.: Dictionary learning and time sparsity for dynamic MR data reconstruction. IEEE Trans. Med. Imaging 33(4), 979–994 (2014)CrossRefGoogle Scholar
  6. 6.
    Plenge, E., et al.: Super-resolution methods in MRI: can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? Magn. Reson. Med. 68(6), 1983–1993 (2012)CrossRefGoogle Scholar
  7. 7.
    Odille, F., Bustin, A., Chen, B., Vuissoz, P.-A., Felblinger, J.: Motion-corrected, super-resolution reconstruction for high-resolution 3D cardiac cine MRI. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 435–442. Springer, Cham (2015). Scholar
  8. 8.
    Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). Scholar
  9. 9.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  10. 10.
    Weigert, M., Royer, L., Jug, F., Myers, G.: Isotropic reconstruction of 3D fluorescence microscopy images using convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 126–134. Springer, Cham (2017). Scholar
  11. 11.
    Heinrich, L., Bogovic, J.A., Saalfeld, S.: Deep learning for isotropic super-resolution from non-isotropic 3D electron microscopy. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 135–143. Springer, Cham (2017). Scholar
  12. 12.
    Oktay, O., et al.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 246–254. Springer, Cham (2016). Scholar
  13. 13.
    Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2018)CrossRefGoogle Scholar
  14. 14.
    Zhu, Q., Du, B., Turkbey, B., Choyke, P., Yan, P.: Exploiting interslice correlation for MRI prostate image segmentation, from recursive neural networks aspect. Complexity 2018, 10 (2018). Article ID 4185279CrossRefGoogle Scholar
  15. 15.
    Poudel, R.P.K., Lamata, P., Montana, G.: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR - 2016. LNCS, vol. 10129, pp. 83–94. Springer, Cham (2017). Scholar
  16. 16.
    Zhang, D., et al.: A multi-level convolutional LSTM model for the segmentation of left ventricle myocardium in infarcted porcine cine MR images. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 470–473. IEEE (2018)Google Scholar
  17. 17.
    Kaggle data science bowl cardiac challenge data (2015).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK

Personalised recommendations