Robust Windowed Harmonic Phase Analysis with a Single Acquisition

  • Santiago Sanz-EstébanezEmail author
  • Lucilio Cordero-Grande
  • Marcos Martín-Fernández
  • Carlos Alberola-López
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11040)


The HARP methodology is a widely extended procedure for cardiac tagged magnetic resonance imaging since it is able to analyse local mechanical behaviour of the heart; extensions and improvements of this method have also been reported since HARP was released. Acquisition of an over-determined set of orientations is one of such alternatives, which has notably increased HARP robustness at the price of increasing examination time. In this paper, we explore an alternative to this method based on the use of multiple peaks, as opposed to multiple orientations, intended for a single acquisition. Performance loss is explored with respect to multiple orientations in a real setting. In addition, we have assessed, by means of a computational phantom, optimal tag orientations and spacings of the stripe pattern by minimizing the Frobenius norm of the difference between the ground truth and the estimated material deformation gradient tensor. Results indicate that, for a single acquisition, multiple peaks as opposed to multiple orientations, are indeed preferable.


Cardiac tagged magnetic resonance imaging Harmonic phase Multi-harmonic analysis Robust strain reconstruction 



This work was partially supported by the European Regional Development Fund (ERDF-FEDER) under Research Grants TEC2014-57428-R and TEC2017-82408-R and the Spanish Junta de Castilla y León under Grant VA069U16.


  1. 1.
    Jeung, M., Germain, P., Croisille, P., El Ghannudi, S., Roy, C., Gangi, A.: Myocardial tagging with MR imaging: overview of normal and pathologic findings. RadioGraphics 32, 1381–1398 (2012)CrossRefGoogle Scholar
  2. 2.
    Shehata, M., Cheng, S., Osman, N., Bluemke, D., Lima, J.: Myocardial tissue tagging with cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 11(1), 55 (2009)CrossRefGoogle Scholar
  3. 3.
    Ibrahim, E.: Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques pulse sequences, analysis, algorithms and applications. J. Cardiovasc. Magn. Reson. 13, 36 (2011)CrossRefGoogle Scholar
  4. 4.
    Simpson, R., Keegan, J., Firmin, D.: MR assessment of regional myocardial mechanics. J. Cardiovasc. Magn. Reson. 37, 576–599 (2013)Google Scholar
  5. 5.
    Axel, L., Montillo, A., Kim, D.: Tagged magnetic resonance imaging of the heart: a survey. Med. Image Anal. 9, 376–393 (2005)CrossRefGoogle Scholar
  6. 6.
    Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)CrossRefGoogle Scholar
  7. 7.
    Young, A., Axel, L.: Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization-a model-based approach. Radiology 185(1), 241–247 (1992)CrossRefGoogle Scholar
  8. 8.
    Ibrahim, E., Swanson, S., Stojanovska, J., Duvernoy, C., Pop-Busui, R.: Harmonic phase versus sine-wave modulation for measuring regional heart function from tagged MRI images. In: 13th IEEE ISBI, Prague, Czech Republic (2016)Google Scholar
  9. 9.
    Arts, T., Prinzen, F., Delhaas, T., Milles, J., Rossi, A., Clarysse, P.: Mapping displacement and deformation of the heart with local sine-wave modeling. Trans. Med. Imag. 29, 1114–1123 (2010)CrossRefGoogle Scholar
  10. 10.
    Osman, N., McVeigh, E., Prince, J.: Imaging heart motion using harmonic phase MRI. IEEE Trans. Med. Imaging 19(3), 186–202 (2000)CrossRefGoogle Scholar
  11. 11.
    Parthasarathy, V.: Characterization of harmonic phase MRI: theory, simulations and applications. Ph.D. thesis, Doctoral dissertation, Johns Hopkins University (2006)Google Scholar
  12. 12.
    Cordero-Grande, L., Vegas-Sánchez-Ferrero, G., Casaseca-de-la-Higuera, P., Alberola-López, C.: Improving harmonic phase imaging by the windowed Fourier transform. In: 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, USA, pp. 520–523, March-April 2011Google Scholar
  13. 13.
    Fu, Y., Chui, C., Teo, C.: Accurate two-dimensional cardiac strain calculation using adaptive windowed Fourier transform and Gabor wavelet transform. Int. J. Comput. Assist. Radiol. Surg. 8(1), 135–144 (2013)CrossRefGoogle Scholar
  14. 14.
    Sanz-Estébanez, S., Cordero-Grande, L., Martín-Fernández, M., Aja-Fernández, S., Alberola-López, C.: Spatial and spectral anisotropy in HARP images: an automated approach. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Prague, Czech Republic, pp. 1105–1108 (2016)Google Scholar
  15. 15.
    Atalar, E., McVeigh, E.: Optimization of tag thickness for measuring position with magnetic resonance imaging. IEEE Trans. Med. Imag. 13(1), 152–160 (1994)CrossRefGoogle Scholar
  16. 16.
    Osman, N., Prince, J.: Regenerating MR tagged images using harmonic phase (HARP) methods. IEEE Trans. Biomed. Eng. 51(8), 1428–1433 (2004)CrossRefGoogle Scholar
  17. 17.
    Mosher, T., Smith, M.: A DANTE tagging sequence for the evaluation of translational sample motion. Magn. Reson. Med. 15, 334–339 (1990)CrossRefGoogle Scholar
  18. 18.
    Agarwal, H., Prince, J., Abd-Elmoniem, K.: Total removal of unwanted harmonic peaks (TruHARP) MRI for single breath-hold high-resolution myocardial motion and strain quantification. Magn. Reson. Med. 64(2), 574–585 (2010)Google Scholar
  19. 19.
    Cordero-Grande, L., Royuela-del-Val, J., Sanz-Estébanez, S., Martín-Fernández, M., Alberola-López, C.: Multi-oriented windowed harmonic phase reconstruction for robust cardiac strain imaging. Med. Image Anal. 29, 1–11 (2016)CrossRefGoogle Scholar
  20. 20.
    Axel, L., Dougherty, L.: MR imaging of motion with spatial modulation of magnetization. Radiology 171(3), 841–845 (1989)CrossRefGoogle Scholar
  21. 21.
    Rutz, A., Ryf, S., Plein, S., Boesiger, P., Kozerke, S.: Accelerated whole-heart 3D CSPAMM for myocardial motion quantification. Magn. Reson. Med. 59, 755–763 (2008)CrossRefGoogle Scholar
  22. 22.
    Cordero-Grande, L., Royuela-del-Val, J., Martín-Fernández, M., Alberola-López, C.: MOWHARP: multi-oriented windowed harp reconstruction for robust strain imaging. In: 22nd Proceedings of the International Society on Magnetic Resonance in Medicine, Milan, Italy, p. 7540, May 2014Google Scholar
  23. 23.
    Nelder, J., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Santiago Sanz-Estébanez
    • 1
    Email author
  • Lucilio Cordero-Grande
    • 2
  • Marcos Martín-Fernández
    • 1
  • Carlos Alberola-López
    • 1
  1. 1.Laboratorio de Procesado de ImagenUniversidad de ValladolidValladolidSpain
  2. 2.Biomedical Engineering DepartmentKing’s CollegeLondonUK

Personalised recommendations