Advertisement

Masseter Segmentation from Computed Tomography Using Feature-Enhanced Nested Residual Neural Network

  • Haifang Qin
  • Yuru Pei
  • Yuke Guo
  • Gengyu Ma
  • Tianmin Xu
  • Hongbin Zha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11046)

Abstract

Masticatory muscles are of significant aesthetic and functional importance to craniofacial developments. Automatic segmentation is a crucial step for shape and functional analysis of muscles. In this paper, we propose an automatic masseter segmentation framework using a deep neural network with coupled feature learning and label prediction pathways. The volumetric features are learned using the unsupervised convolutional auto-encoder and integrated with multi-level features in the label prediction pathway to augment features for segmentation. The label prediction pathway is built upon the nested residual network which is feasible for information propagation and fast convergence. The proposed method realizes the voxel-wise label inference of masseter muscles from the clinically captured computed tomography (CT) images. In the experiments, the proposed method outperforms the compared state-of-the-arts, achieving a mean Dice similarity coefficient (DSC) of \(93\pm 1.2\%\) for the segmentation of masseter muscles.

Notes

Acknowledgements

This work was supported by NSFC 61272342.

References

  1. 1.
    Cicek, z., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: learning dense volumetric segmentation from sparse annotation. In: MICCAI, pp. 424–432Google Scholar
  2. 2.
    Criminisi, A., Robertson, D., Konukoglu, E., Shotton, J., Pathak, S., White, S., Siddiqui, K.: Regression forests for efficient anatomy detection and localization in computed tomography scans. Med. Image Anal. 17(8), 1293–1303 (2013)CrossRefGoogle Scholar
  3. 3.
    Ghosh, S., Boulanger, P., Acton, S.T., Blemker, S.S., Ray, N.: Automated 3d muscle segmentation from mri data using convolutional neural network. In: IEEE ICIP (2017)Google Scholar
  4. 4.
    Guan, Q., Zhang, B., Long, H., Hu, H., Zhuang, X., Hu, Y., et al.: A modified distance regularized level set evolution for masseter segmentation. In: International Conference on Information Technology in Medicine and Education, pp. 16–19 (2017)Google Scholar
  5. 5.
    Majeed, T., Fundana, K., Lüthi, M., Kiriyanthan, S., Beinemann, J., Cattin, P.C., et al.: Using a flexibility constrained 3d statistical shape model for robust mrf-based segmentation. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), pp. 57–64. IEEE (2012)Google Scholar
  6. 6.
    Ng, H.P., Ong, S.H., Foong, K.W., Goh, P.S., Nowinski, W.L.: Masseter segmentation using an improved watershed algorithm with unsupervised classification. Comput. Biol. Med. 38(2), 171–184 (2008)CrossRefGoogle Scholar
  7. 7.
    Ng, H.P., Ong, S.H., Liu, J., Huang, S., Foong, K.W.C., Goh, P.S., Nowinski, W.L.: 3d segmentation and quantification of a masticatory muscle from mr data using patient-specific models and matching distributions. J. Digit. Imaging 22(5), 449 (2009)CrossRefGoogle Scholar
  8. 8.
    Nie, D., et al.: Segmentation of craniomaxillofacial bony structures from mri with a 3d deep-learning based cascade framework. In: International Workshop on Machine Learning in Medical Imaging, pp. 266–273 (2017)CrossRefGoogle Scholar
  9. 9.
    Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: IEEE International Conference on Computer Vision,. pp. 1520–1528 (2015)Google Scholar
  10. 10.
    Pei, Y., et al.: Multi-scale volumetric convnet with nested residual connections for segmentation of anterior cranial base. In: MLMI (2017)Google Scholar
  11. 11.
    Piau, N.H.: Segmentation of human muscles of mastication from magnetic resonance images. Basic Res. J. Agric. Sci. Rev. 180(2), 1167–1175 (2008)Google Scholar
  12. 12.
    Ray, N., Mukherjee, S., Nakka, K.K., Acton, S.T., Blanker, S.S.: 3d-to-2d mapping for user interactive segmentation of human leg muscles from mri data. In: Signal and Information Processing, pp. 50–54 (2015)Google Scholar
  13. 13.
    Sellatunis, T., Pokhojaev, A., Sarig, R., OHiggins, P., May, H.: Human mandibular shape is associated with masticatory muscle force. Sci. Rep. 8(1), 6042 (2018)CrossRefGoogle Scholar
  14. 14.
    Yan, G., Ullrich, S., Grottke, O., Rossaint, R., Kuhlen, T., Deserno, T.M., et al.: Scene-based segmentation of multiple muscles from mri in mitk. Bildverarbeitung fr die Medizin (2011)Google Scholar
  15. 15.
    Yao, J., Kovacs, W., Hsieh, N., Liu, C.Y., Summers, R.M.: Holistic segmentation of intermuscular adipose tissues on thigh mri. In: MICCAI, pp. 737–745 (2017)Google Scholar
  16. 16.
    Yu, L., Yang, X., Chen, H., Qin, J., Heng, P.A.: Volumetric convnets with mixed residual connections for automated prostate segmentation from 3d mr images. In: AAAI (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Haifang Qin
    • 1
  • Yuru Pei
    • 1
  • Yuke Guo
    • 2
  • Gengyu Ma
    • 3
  • Tianmin Xu
    • 4
  • Hongbin Zha
    • 1
  1. 1.Key Laboratory of Machine Perception (MOE), Department of Machine IntelligencePeking UniversityBeijingChina
  2. 2.Luoyang Institute of Science and TechnologyLuoyangChina
  3. 3.uSens Inc.San JoseUSA
  4. 4.School of StomatologyPeking UniversityBeijingChina

Personalised recommendations