Prostate Cancer Classification on VERDICT DW-MRI Using Convolutional Neural Networks

  • Eleni ChiouEmail author
  • Francesco Giganti
  • Elisenda Bonet-Carne
  • Shonit Punwani
  • Iasonas Kokkinos
  • Eleftheria Panagiotaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11046)


Currently, non-invasive imaging techniques such as magnetic resonance imaging (MRI) are emerging as powerful diagnostic tools for prostate cancer (PCa) characterization. This paper focuses on automated PCa classification on VERDICT (Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors) diffusion weighted (DW)-MRI, which is a non-invasive microstructural imaging technique that comprises a rich imaging protocol and a tissue computational model to map in vivo histological indices. The contribution of the paper is two fold. Firstly, we investigate the potential of automated, model-free PCa classification on raw VERDICT DW-MRI. Secondly, we attempt to adapt and evaluate novel fully convolutional neural networks (FCNNs) for PCa characterization. We present two neural network architectures that adapt U-Net and ResNet-18 to the PCa classification problem. We train the networks end-to-end on DW-MRI data and evaluate the diagnostic performance employing a 10-fold cross validation approach using data acquired from 103 patients. ResNet-18 outperforms U-Net with an average AUC of \(86.7\%\). Our results show promise for the utilization of raw VERDICT DW-MRI data and FCNNs for automating the PCa diagnostic pathway.


VERDICT MRI Prostate cancer classification Convolutional neural networks 



This research is funded by EPSRC grand EP/N021967/1. The Titan Xp used for this research was donated by the NVIDIA Corporation.


  1. 1.
    Torre, L.A., et al.: Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015)CrossRefGoogle Scholar
  2. 2.
    Kiraly, A.P., et al.: Deep convolutional encoder-decoders for prostate cancer detection and classification. In: MICCAI (2017)Google Scholar
  3. 3.
    Mehrtash, A., et al.: Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks. Proc. SPIE Int. Soc. Opt. Eng. (2017)Google Scholar
  4. 4.
    Ahmed, H.U., et al.: Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017)CrossRefGoogle Scholar
  5. 5.
    Isebaert, S., et al.: Multiparametric MRI for prostate cancer localization in correlation to wholemount histopathology. J. Magn. Reson. Imaging 37, 1392–1401 (2013)CrossRefGoogle Scholar
  6. 6.
    Metzger, G.J., et al.: Detection of prostate cancer: Quantitative multiparametric MR imaging models developed using registered correlative histopathology. Radiology 279, 805–816 (2016)CrossRefGoogle Scholar
  7. 7.
    Bourne, R., et al.: Limitations and prospects for diffusion-weighted MRI of the prostate. Diagnostics 6, 21 (2016)CrossRefGoogle Scholar
  8. 8.
    Panagiotaki, E., et al.: Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 74, 1902–1912 (2014)CrossRefGoogle Scholar
  9. 9.
    Panagiotaki, E., et al.: Microstructural characterization of normal and malignant human prostate tissue with vascular, extracellular, and restricted diffusion for cytometry in tumours magnetic resonance imaging. Invest. Radiol. 50, 218–227 (2015)CrossRefGoogle Scholar
  10. 10.
    Panagiotaki, E., et al.: Optimised VERDICT MRI protocol for prostate cancer characterisation. In: ISMRM (2015)Google Scholar
  11. 11.
    Ourselin, S., et al.: Reconstructing a 3D structure from serial histological sections. Image Vis. Comput. 19, 25–31 (2001)CrossRefGoogle Scholar
  12. 12.
    Long, J., et al.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)Google Scholar
  13. 13.
    Ronneberger, O., et al.: U-Net: Convolutional networks for biomedical image segmentation. In: MICCAI (2015)Google Scholar
  14. 14.
    Badrinarayanan, V.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intel. 39, 2481–2495 (2017)CrossRefGoogle Scholar
  15. 15.
    Chen, L.C., et al.: Encoder-decoder with atrous separable convolution for semantic image segmentation. ArXiv (2018)Google Scholar
  16. 16.
    Ioffe, S., et al.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)Google Scholar
  17. 17.
    Nair, V., et al.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)Google Scholar
  18. 18.
    He, K., et al.: Deep residual learning for image recognition. In: CVPR (2016)Google Scholar
  19. 19.
    Paszke, A., et al.: Automatic differentiation in pytorch. In: Autodiff Workshop, NIPS (2017)Google Scholar
  20. 20.
    Litjens, G., et al.: Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging 33, 1083–1092 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Eleni Chiou
    • 1
    • 2
    Email author
  • Francesco Giganti
    • 3
    • 4
  • Elisenda Bonet-Carne
    • 5
  • Shonit Punwani
    • 5
  • Iasonas Kokkinos
    • 1
  • Eleftheria Panagiotaki
    • 1
    • 2
  1. 1.Department of Computer ScienceUCLLondonUK
  2. 2.Centre for Medical Image Computing, UCLLondonUK
  3. 3.Department of RadiologyUCLH NHS Foundation TrustLondonUK
  4. 4.Division of Surgery and Interventional ScienceUCLLondonUK
  5. 5.Division of MedicineCentre for Medical Imaging, UCLLondonUK

Personalised recommendations