Survey on Short-Term Technology Developments and Readiness Levels for Autonomous Shipping

  • Laurien E. van Cappelle
  • Linying ChenEmail author
  • Rudy R. Negenborn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11184)


Recently, Autonomous Surface Vessels (ASVs) have attracted a lot of attention. Developing a fully autonomous vessel is challenging. Existing research provides a track from existing manned vessels to a remote-controlled vessel with reduced crews, an unmanned remote-controlled vessel, and at the end, a fully autonomous vessel. The first step is to equip existing vessels to realize autonomous sailing. In this paper, we focus on the technologies that make existing vessels “smarter”. A categorization of technologies is provided based on the basic architecture of ASV: Navigation, Guidance, Control and Hardware. An overview of the technology developments in each category is presented. The Technology Readiness Level (TRL) is applied to indicate whether these technologies could become commercial in the short term.


Autonomous surface vessel Technology readiness level Short-term technology development Review 



This research is partially supported by SmartPort project ‘TET-SP: Autonomous shipping in the Port of Rotterdam’ 2017 and the China Scholarship Council under Grant 201406950041.


  1. 1.
  2. 2.
    Alfi, A., Shokrzadeh, A., Asadi, M.: Reliability analysis of h-infinity control for a container ship in way-point tracking. Appl. Ocean Res. 52, 309–316 (2015)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    AMS Transport Crewing Solutions: Factsheet AMS (2017).
  5. 5.
    Asvadi, A., Premebida, C., Peixoto, P., Nunes, U.: 3D Lidar-based static and moving obstacle detection in driving environments: an approach based on voxels and multi-region ground planes. Robot. Auton. Syst. 83, 299–311 (2016)CrossRefGoogle Scholar
  6. 6.
    Brodkin, J.: SpaceX plans worldwide satellite internet with low latency, gigabit speed (2016).
  7. 7.
    Campbell, S., Naeem, W., Irwin, G.: A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annu. Rev. Control 36(2), 267–283 (2012)CrossRefGoogle Scholar
  8. 8.
    Challenge, S.S.: Covadem: coöperatieve vaardieptemetingen (2017).
  9. 9.
    Chen, L., Negenborn, R.R., Lodewijks, G.: Path planning for autonomous inland vessels using A*BG. In: Paias, A., Ruthmair, M., Voß, S. (eds.) ICCL 2016. LNCS, vol. 9855, pp. 65–79. Springer, Cham (2016). Scholar
  10. 10.
    Chen, L., Hopman, H., Negenborn, R.R.: Distributed model predictive control for vessel train formations of cooperative multi-vessel systems. Transp. Res. Part C Emerg. Technol. 92, 101–118 (2018)CrossRefGoogle Scholar
  11. 11.
    Christiansen, M., Fagerholt, K., Nygreen, B., Ronen, D.: Ship routing and scheduling in the new millennium. Eur. J. Oper. Res. 228(3), 467–483 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Christiansen, M., Fagerholt, K., Ronen, D.: Ship routing and scheduling: status and perspectives. Transp. Sci. 38(1), 1–18 (2004)CrossRefGoogle Scholar
  13. 13.
    Das, B., Subudhi, B., Pati, B.B.: Cooperative formation control of autonomous underwater vehicles: an overview. Int. J. Autom. Comput. 13(3), 199–225 (2016)CrossRefGoogle Scholar
  14. 14.
    Ejaz, W., Manzoor, K., Kim, H.J., Jang, B.T., Jin, G.J., Kim, H.S.: Two-state routing protocol for maritime multi-hop wireless networks. Comput. Electr. Eng. 39(6), 1854–1866 (2013)CrossRefGoogle Scholar
  15. 15.
    Escario, J., Jimenez, J., Giron-Sierra, J.: Optimization of autonomous ship maneuvers applying swarm intelligence. In: Proceedings of 2010 IEEE International Conference on Systems Man and Cybernetics, pp. 2603–2610 (2010)Google Scholar
  16. 16.
    GE Corperation: GE’s marine solutions (2016).
  17. 17.
    Geertsma, R.D., Negenborn, R.R., Visser, K., Hopman, J.J.: Design and control of hybrid power and propulsion systems for smart ships: a review of developments. Appl. Energy 194, 30–54 (2017)CrossRefGoogle Scholar
  18. 18.
    Hermann, D., Galeazzi, R., Andersen, J.C., Blanke, M.: Smart sensor based obstacle detection for high-speed unmanned surface vehicle. In: Proceedings of 10th IFAC Conference on Manoeuvring and Control of Marine Craft, MCMC 2015, Copenhagen, 24–26 August 2015, vol. 48, pp. 190–197 (2015)CrossRefGoogle Scholar
  19. 19.
    Hu, L., Naeem, W., Rajabally, E., Watson, G., Mills, T., Bhuiyan, Z., Salter, I.: COLREGs-compliant path planning for autonomous surface vehicles: a multiobjective optimization. In: Proceedings of 20th IFAC World Congress, vol. 50, pp. 13662–13667 (2017)Google Scholar
  20. 20.
    Hyundai Heavy Industries Co.: Hyundai heavy develops new collision avoidance system for ships (2014).
  21. 21.
    Im, N.K., Nguyen, V.S.: Artificial neural network controller for automatic ship berthing using head-up coordinate system. Int. J. Naval Architect. Ocean Eng. 10(3), 235–249 (2018)CrossRefGoogle Scholar
  22. 22.
    Johansen, T.A., Cristofaro, A., Perez, T.: Ship collision avoidance using scenario-based model predictive control. In: Proceedings of 10th IFAC Conference on Control Applications in Marine Systems, CAMS 2016, Trondheim, Norway, 13–16 September, vol. 49, pp. 14–21 (2016)Google Scholar
  23. 23.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)CrossRefGoogle Scholar
  24. 24.
    Lazakis, I., Dikis, K., Michala, A.L., Theotokatos, G.: Advanced ship systems condition monitoring for enhanced inspection, maintenance and decision making in ship operations. Transp. Res. Procedia 14(Suppl. C), 1679–1688 (2016)CrossRefGoogle Scholar
  25. 25.
    Lazarowska, A.: A trajectory base method for ship’s safe path planning. Procedia Comput. Sci. 96(2016), 1022–1031 (2016)CrossRefGoogle Scholar
  26. 26.
    Leary, K.: China has launched the world’s first all-electric cargo ship (2017).
  27. 27.
    Liu, Z., Zhang, Y., Yu, X., Yuan, C.: Unmanned surface vehicles: an overview of developments and challenges. Annu. Rev. Control 41, 71–93 (2016)CrossRefGoogle Scholar
  28. 28.
    Ma, F., Wu, Q., Yan, X., Chu, X., Zhang, D.: Classification of automatic radar plotting aid targets based on improved fuzzy c-means. Transp. Res. Part C Emerg. Technol. 51(2015), 180–195 (2015)CrossRefGoogle Scholar
  29. 29.
    Mediamobil Communication GmbH and ESA: SASS@Sea - satellite based system and services for broadband applications at sea (2014).
  30. 30.
    Mizuno, N., Uchida, Y., Okazaki, T.: Quasi real-time optimal control scheme for automatic berthing. In: Proceedings of 10th IFAC Conference on Manoeuvring and Control of Marine Craft, MCMC 2015, Copenhagen, 24–26 August 2015, vol. 48, pp. 305–312 (2015)CrossRefGoogle Scholar
  31. 31.
    Mu, L.: A hybrid network for maritime on-board communications. In: 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 761–768 (2012)Google Scholar
  32. 32.
    Mu, L., Prinz, A.: Delay-oriented data traffic migration in maritime mobile communication environments. In: Proceedings of 4th International Conference on Ubiquitous and Future Networks (ICUFN 2012), Phuket, Thailand, pp. 417–422 (2012)Google Scholar
  33. 33.
    Naeem, W., Sutton, R., Ahmad, M.: LQG/LTR control of an autonomous underwater vehicle using a hybrid guidance law. In: Proceedings of 1st IFAC Workshop on Guidance and Control of Underwater Vehicles, Newport, UK, pp. 31–36 (2003)Google Scholar
  34. 34.
  35. 35.
    Netherlands Maritime Technology: NMT coördineert nieuw maritiem europees innovatieproject ‘NOVIMAR’ (2017).
  36. 36.
    Perkovic, M., Gucma, M., Luin, B., Gucma, L., Brcko, T.: Accommodating larger container vessels using an integrated laser system for approach and berthing. Microprocess. Microsyst. 52, 106–116 (2017)CrossRefGoogle Scholar
  37. 37.
    Rijnmond, R.: Zelfvarend binnenschip komt eraan (2017).
  38. 38.
    RØdseth, H.: Predictive maintenance for autonomous ship - emerging trends in Industrie 4.0 (2016).
  39. 39.
    Rødseth, Ø.J., Burmeister, H.C.: Developments toward the unmanned ship. In: Proceedings of International Symposium Information on Ships-ISIS, vol. 201, pp. 30–31 (2012)Google Scholar
  40. 40.
    Royal Academy of Engineering: Future ship powering options. Technical report, Royal Academy of Engineering (2013)Google Scholar
  41. 41.
    Sakib, S.: Implementation of digital imu for increasing the accuracy of hydrographic survey. Procedia Eng. 194, 386–393 (2017)CrossRefGoogle Scholar
  42. 42.
    Sariff, N., Buniyamin, N.: An overview of autonomous mobile robot path planning algorithms. In: Proceedings of the 4th Student Conference on Research and Development, Selangor, Malaysia, pp. 183–188 (2006)Google Scholar
  43. 43.
    Schiaretti, M., Chen, L., Negenborn, R.R.: Survey on autonomous surface vessels: Part I - a new detailed definition of autonomy levels. In: Bektaş, T., Coniglio, S., Martinez-Sykora, A., Voß, S. (eds.) Computational Logistics. LNCS, vol. 10572, pp. 219–233. Springer, Cham (2017). Scholar
  44. 44.
    Schiaretti, M., Chen, L., Negenborn, R.R.: Survey on autonomous surface vessels: Part II - categorization of 60 prototypes and future applications. In: Bektaş, T., Coniglio, S., Martinez-Sykora, A., Voß, S. (eds.) Computational Logistics. LNCS, vol. 10572, pp. 234–252. Springer, Cham (2017). Scholar
  45. 45.
    Sørensen, M.E.N., Breivik, M.: Comparing nonlinear adaptive motion controllers for marine surface vessels. In: Proceedings of 10th IFAC Conference on Manoeuvring and Control of Marine Craft, MCMC 2015, Copenhagen, 24–26 August 2015, vol. 48, pp. 291–298 (2015)CrossRefGoogle Scholar
  46. 46.
    Statheros, T., Howells, G., Maier, K.M.: Autonomous ship collision avoidance navigation concepts, technologies and techniques. J’. Navig. 61(1), 129–142 (2008). Scholar
  47. 47.
    Sumić, D., Peraković, D., Jurcević, M.: Optimizing data traffic route for maritime vessels communications. Procedia Eng. 100, 1286–1293 (2015)CrossRefGoogle Scholar
  48. 48.
  49. 49.
    The Guardian: Facebook drone that could bring global internet access completes test flight (2017).
  50. 50.
    Tran, V.L., Im, N.: A study on ship automatic berthing with assistance of auxiliary devices. Int. J. Naval Archit. Ocean Eng. 4(3), 199–210 (2012)CrossRefGoogle Scholar
  51. 51.
    Tsou, M.C.: Multi-target collision avoidance route planning under an ECDIS framework. Ocean Eng. 121, 268–278 (2016)CrossRefGoogle Scholar
  52. 52.
    United Nations Conference on Trade and Development: Merchant fleet by flag of registration and by type of ship, annual, 1980–2018 (2018).
  53. 53.
    Uras, T., Koenig, S.: An empirical comparison of any-angle path-planning algorithms. In: Proceedings of the 8th Annual Symposium on Combinatorial Search, Ein Gedi, Israel, pp. 206–210 (2015)Google Scholar
  54. 54.
    Wang, X., Liu, Z., Cai, Y.: The ship maneuverability based collision avoidance dynamic support system in close-quarters situation. Ocean Eng. 146, 486–497 (2017)CrossRefGoogle Scholar
  55. 55.
    Wolken-Möhlmann, G., Gottschall, J., Lange, B.: First verification test and wake measurement results using a Ship-LIDAR system. Energy Procedia 53, 146–155 (2014)CrossRefGoogle Scholar
  56. 56.
    Xu, Q.: Collision avoidance strategy optimization based on danger immune algorithm. Comput. Ind. Eng. 76, 268–279 (2014)CrossRefGoogle Scholar
  57. 57.
    Xue, Y., Clelland, D., Lee, B., Han, D.: Automatic simulation of ship navigation. Ocean Eng. 38(17–18), 2290–2305 (2011)CrossRefGoogle Scholar
  58. 58.
    Yalcin, O., Sayar, A., Arar, O., Akpinar, S., Kosunalp, S.: Approaches of road boundary and obstacle detection using LIDAR. In: Proceedings of 1st IFAC Workshop on Advances in Control and Automation Theory for Transportation Applications, vol. 46, pp. 211–215 (2013)CrossRefGoogle Scholar
  59. 59.
    Young, J., Simic, M.: Lidar and monocular based overhanging obstacle detection. Procedia Comput. Sci. 60, 1423–1432 (2015)CrossRefGoogle Scholar
  60. 60.
    Zhang, J., Zhang, D., Yan, X., Haugen, S., Soares, C.G.: A distributed anti-collision decision support formulation in multi-ship encounter situations under COLREGs. Ocean Eng. 105, 336–348 (2015)CrossRefGoogle Scholar
  61. 61.
    Zheng, H., Negenborn, R.R., Lodewijks, G.: Robust distributed predictive control of waterborne AGVs–a cooperative and cost-effective approach. IEEE Trans. Cybern. 48(8), 2449–2461 (2018)CrossRefGoogle Scholar
  62. 62.
    Zhou, M.T., Harada, H.: Cognitive maritime wireless mesh/ad hoc networks. J. Netw. Comput. Appl. 35(2), 518–526 (2012)CrossRefGoogle Scholar
  63. 63.
    Zhu, M., Hahn, A., Wen, Y.Q., Bolles, A.: Identification-based simplified model of large container ships using support vector machines and artificial bee colony algorithm. Appl. Ocean Res. 68, 249–261 (2017)CrossRefGoogle Scholar
  64. 64.
    Zolfagharifard, E.: Now Google is going to dominate space: search giant to launch 180 satellites to provide internet access for the entire planet, sources claim (2014).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Laurien E. van Cappelle
    • 1
  • Linying Chen
    • 1
    Email author
  • Rudy R. Negenborn
    • 1
  1. 1.Department of Maritime and Transport TechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations