Advertisement

Exact Methods and Heuristics for the Liner Shipping Crew Scheduling Problem

  • Valerio Maria Sereno
  • Line Blander ReinhardtEmail author
  • Stefan Guericke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11184)

Abstract

In this paper the liner shipping crew scheduling problem is described and modelled. Three different models have been formulated and tested for the scheduling problem. A mixed integer formulation and a set covering formulation are constructed and solved using exact methods. A mat-heuristic based on column generation has been implemented and tested. Moreover, a simple heuristic is implemented as a benchmark value. The models and methods were tested on smaller instances of the problem. The results show that good results can be achieved within 5 min using the heuristic and around an hour using the set partitioning formulation.

References

  1. 1.
    Beasley, J.E., Cao, B.: A tree search algorithm for the crew scheduling problem. Eur. J. Oper. Res. 94(3), 517–526 (1996)CrossRefGoogle Scholar
  2. 2.
    den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck, L.: Personnel scheduling: a literature review. Eur. J. Oper. Res. 226(3), 367–385 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    BIMCO and ICS: Manpower report: the global supply and demand for seafarers in 2015, Framework (2015). http://www.ics-shipping.org/docs/default-source/publications/employment-and-training/bimco-and-ics-manpower-report-2015.pdf
  4. 4.
    Borndörfer, R., Schelten, U., Schlechte, T., Weider, S.: A column generation approach to airline crew scheduling. In: Haasis, H.-D., Kopfer, H., Schönberger, J. (eds.) Operations Research Proceedings 2005, vol. 2005, pp. 343–348. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-32539-5_54CrossRefGoogle Scholar
  5. 5.
    Christiansen, M., Fagerholt, K., Nygreen, B., Ronen, D.: Maritime transportation. Handb. Oper. Res. Manag. Sci. 14, 189–284 (2007)Google Scholar
  6. 6.
    Dantzig, G.B.: Letter to the editor-a comment on traffic delays at toll booths. J. Oper. Res. Soc. Am. 3, 229–341 (1954)MathSciNetGoogle Scholar
  7. 7.
    Dohn, A., Mason, A.: Branch-and-price for staff rostering: an efficient implementation using generic programming and nested column generation. Eur. J. Oper. Res. 230, 157–169 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Edie, L.C.: Traffic delays at toll booths. J. Oper. Res. Soc. Am. 2, 107–138 (1954)Google Scholar
  9. 9.
    Gamache, M., Soumis, F., Marquis, G., Desrosiers, J.: A column generation approach for large-scale aircrew rostering problems. Oper. Res. 47, 247–263 (1999)CrossRefGoogle Scholar
  10. 10.
    IMO: Principles of safe manning, Framework, A27/Res.1047 (2011). www.imo.org/en/OurWork/HumanElement/VisionPrinciplesGoals/Documents/1047(27).pdf
  11. 11.
    Kohl, N., Karisch, S.E.: Airline crew rostering: problem types, modeling, and optimization. Ann. Oper. Res. 127, 223–257 (2004)CrossRefGoogle Scholar
  12. 12.
    Leggate, A.: A vessel crew scheduling problem: formulations and solution methods. Report University of Strathclyde (2016)Google Scholar
  13. 13.
    Li, H.T., Womer, K.: A decomposition approach for shipboard manpower scheduling. Mil. Oper. Res. 14, 67–90 (2009)CrossRefGoogle Scholar
  14. 14.
    Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. In: Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, pp. 269–280 (1981)Google Scholar
  15. 15.
    Ryan, D.M.: The solution of massive generalized set partitioning problems in aircrew rostering. J. Oper. Res. Soc. 4392, 459–467 (1992)CrossRefGoogle Scholar
  16. 16.
    UNCTAD: Review of Maritime Transport 2016, Technical report 2016. http://unctad.org/en/PublicationsLibrary/rmt2016_en.pdf

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Valerio Maria Sereno
    • 1
  • Line Blander Reinhardt
    • 2
    Email author
  • Stefan Guericke
    • 3
  1. 1.DTU Management EngineeringThe Technical University of DenmarkKongens LyngbyDenmark
  2. 2.Institute of Materials and ProductionAalborg UniversityAalborgDenmark
  3. 3.Data Science and Artificial IntelligenceA.P. Moller - MaerskCopenhagenDenmark

Personalised recommendations