Advertisement

Adapting the A* Algorithm to Increase Vehicular Crowd-Sensing Coverage

  • Sergio Di MartinoEmail author
  • Paola Festa
  • Dario Asprone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11184)

Abstract

Current vehicles are incorporating an even wider number of environmental sensors, mainly needed to improve safety, efficiency and quality of life for passengers. These sensors bring a high potential to significantly contribute also to urban surveillance for Smart Cities by leveraging opportunistic crowd-sensing approaches. In this context, the achievable spatio-temporal sensing coverage is an issue that requires more investigations, since usually vehicles are not uniformly distributed over the road network, as drivers mostly select a shortest time path to destination. In this paper we present an evolution of the standard \(\mathbf A \varvec{^{*}}\) algorithm to enhance vehicular crowd-sensing coverage. In particular, with our solution, the route is chosen in a probabilistic way, among all those satisfying a constraint on the total length of the path. The proposed algorithm has been empirically evaluated by means of a public dataset of real taxi trajectories, showing promising performances in terms of achievable sensing coverage.

References

  1. 1.
    Vegni, A.M., Loscri, V.: A survey on vehicular social networks. IEEE Commun. Surv. Tutor. 17(4), 2397–2419 (2015)CrossRefGoogle Scholar
  2. 2.
    Di Martino, S.: Discovering information from spatial big data for ITS. Intelligent Transport Systems (ITS): Past, Present and Future Directions, pp. 109–130 (2017)Google Scholar
  3. 3.
    Bock, F., Martino, S.D., Sester, M.: What are the potentialities of crowdsourcing for dynamic maps of on-street parking spaces? In: Proceedings of the 9th ACM SIGSPATIAL International Workshop on Computational Transportation Science, pp. 19–24. ACM (2016)Google Scholar
  4. 4.
    Bock, F., Attanasio, Y., Di Martino, S.: Spatio-temporal road coverage of probe vehicles: a case study on crowd-sensing of parking availability with taxis. In: Bregt, A., Sarjakoski, T., van Lammeren, R., Rip, F. (eds.) GIScience 2017. LNGC, pp. 165–184. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56759-4_10CrossRefGoogle Scholar
  5. 5.
    Mathur, S., et al.: ParkNet: drive-by sensing of road-side parking statistics. In: Proceedings of 8th International Conference on Mobile Systems, Applications, and Services, pp. 123–136. ACM, New York (2010)Google Scholar
  6. 6.
    Bock, F., Di Martino, S.: How many probe vehicles do we need to collect on-street parking information? In: 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 538–543. IEEE (2017)Google Scholar
  7. 7.
    Masutani, O.: A sensing coverage analysis of a route control method for vehicular crowd sensing. In: 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 396–401. IEEE (2015)Google Scholar
  8. 8.
    Boriboonsomsin, K., Barth, M.J., Zhu, W., Vu, A.: Eco-routing navigation system based on multisource historical and real-time traffic information. IEEE Trans. Intell. Transp. Syst. 13(4), 1694–1704 (2012)CrossRefGoogle Scholar
  9. 9.
    Di Martino, S., Giorio, C., Galiero, R.: A rich cloud application to improve sustainable mobility. In: Tanaka, K., Fröhlich, P., Kim, K.-S. (eds.) W2GIS 2011. LNCS, vol. 6574, pp. 109–123. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19173-2_10CrossRefGoogle Scholar
  10. 10.
    Asprone, D., Di Martino, S., Festa, P.: Improving sensing coverage of probe vehicles with probabilistic routing. In: R. Luaces, M., Karimipour, F. (eds.) W2GIS 2018. LNCS, vol. 10819, pp. 1–10. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-90053-7_1CrossRefGoogle Scholar
  11. 11.
    Lee, E., Lee, E.-K., Gerla, M., Oh, S.Y.: Vehicular cloud networking: architecture and design principles. IEEE Commun. Mag. 52(2), 148–155 (2014)CrossRefGoogle Scholar
  12. 12.
    Guerrero-Ibáñez, J., Zeadally, S., Contreras-Castillo, J.: Sensor technologies for intelligent transportation systems. Sensors 18(4), 1212 (2018)CrossRefGoogle Scholar
  13. 13.
    Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–39 (2011)CrossRefGoogle Scholar
  14. 14.
    Robert Bosch GmbH: Bosch Community-based parking (2016). http://www.bosch-mobility-solutions.com/en/connected-mobility/community-based-parking/. Accessed 27 June 2016
  15. 15.
    Petty, K., Mahoney III, W.: Enhancing road weather information through vehicle infrastructure integration. Transp. Res. Rec. J. Transp. Res. Board 2015, 132–140 (2007)CrossRefGoogle Scholar
  16. 16.
    Wang, X., Zheng, X., Zhang, Q., Wang, T., Shen, D.: Crowdsourcing in ITS: the state of the work and the networking. IEEE Trans. Intell. Transp. Syst. 17(6), 1596–1605 (2016)CrossRefGoogle Scholar
  17. 17.
    Di Martino, S., Rossi, S.: An architecture for a mobility recommender system in smart cities. Procedia Comput. Sci. 98, 425–430 (2016)CrossRefGoogle Scholar
  18. 18.
    Kwoczek, S., Di Martino, S., Nejdl, W.: Stuck around the stadium? An approach to identify road segments affected by planned special events. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), pp. 1255–1260. IEEE (2015)Google Scholar
  19. 19.
    Kwoczek, S., Di Martino, S., Nejdl, W.: Predicting and visualizing traffic congestion in the presence of planned special events. J. Visual Lang. Comput. 25(6), 973–980 (2014)CrossRefGoogle Scholar
  20. 20.
    Bock, F., Attanasio, Y., Di Martino, S.: Spatio-temporal road coverage of probe vehicles: a case study on crowd-sensing of parking availability with taxis. In: Bregt, A., Sarjakoski, T., van Lammeren, R., Rip, F. (eds.) Societal Geo-innovation. Lecture Notes in Geoinformation and Cartography, pp. 165–184. Springer, UK (2017).  https://doi.org/10.1007/978-3-319-56759-4_10CrossRefGoogle Scholar
  21. 21.
    Lugar, G.F., Stubblefield, W.A.: Artificial Intelligence Structures and Strategies for Complex Problem Solving. Addison Wesley Longman, Harlow (1998)Google Scholar
  22. 22.
    Pearl, J., Kim, J.H.: Studies in semi-admissible heuristics. IEEE Trans. Pattern Anal. Mach. Intell. 4, 392–399 (1982)CrossRefGoogle Scholar
  23. 23.
    Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M.: CRAWDAD dataset EPFL/mobility, 24 February 2009. Downloaded from http://crawdad.org/epfl/mobility/20090224. Accessed Feb 2009
  24. 24.
    Chen, C., et al.: Crowddeliver: planning city-wide package delivery paths leveraging the crowd of taxis. IEEE Trans. Intell. Transp. Syst. 18(6), 1478–1496 (2017)Google Scholar
  25. 25.
    Axer, S., Pascucci, F., Friedrich, B.: Estimation of traffic signal timing data and total delay for urban intersections based on low-frequency floating car data. In: Proceedings of the 6th Mobil.TUM 2015 (2015)Google Scholar
  26. 26.
    Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for low-sampling-rate GPS trajectories. In: ACM SIGSPATIAL GIS 2009. ACM, November 2009. https://www.microsoft.com/en-us/research/publication/map-matching-for-low-sampling-rate-gps-trajectories/

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sergio Di Martino
    • 1
    Email author
  • Paola Festa
    • 2
  • Dario Asprone
    • 1
  1. 1.Department of Electrical and Telecommunications EngineeringUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Mathematics and Applications “R. Caccioppoli”University of Naples Federico IINaplesItaly

Personalised recommendations