Advertisement

Applying a Relax-and-Fix Approach to a Fixed Charge Network Flow Model of a Maritime Inventory Routing Problem

  • Marcelo W. FriskeEmail author
  • Luciana S. Buriol
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11184)

Abstract

This work presents a Relax-and-Fix algorithm to solve a class of single product Maritime Inventory Routing Problems. The problem consists of routing and scheduling a heterogeneous fleet of vessels to supply a set of ports, respecting lower and upper limits of inventory at production and consumption ports, along with a time horizon. A fixed charge network flow is used to model the problem, and valid inequalities are incorporated into the formulation, providing tight bounds and enabling the Relax-and-Fix algorithm to obtain good solutions in reasonable processing times. Three MIP-based local search procedures are proposed for improving solutions. Tests performed on a set of benchmark instances from the literature show that the solution approach can be effective for solving the problem.

Keywords

Maritime Inventory Routing Problem Fixed Charge Network Flow Relax-and-Fix MIP-Based Local Search 

Notes

Acknowledgment

The present work was carried out with the support of CNPq, National Council of Scientific and Technological Development - Brazil and the support of FAPERGS, Foundation for Research Support of the State of Rio Grande do Sul.

References

  1. 1.
    Maritime inventory routing problem library (MIRPLIB). https://mirplib.scl.gatech.edu/. Accessed 05 Apr 2017
  2. 2.
    Agra, A., Andersson, H., Christiansen, M., Wolsey, L.: A maritime inventory routing problem: discrete time formulations and valid inequalities. Networks 62(4), 297–314 (2013).  https://doi.org/10.1002/net.21518MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Agra, A., Christiansen, M., Delgado, A.: Discrete time and continuous timeformulations for a short sea inventory routing problem. Optim. Eng. 18(1), 269–297 (2016).  https://doi.org/10.1007/s11081-016-9319-0CrossRefzbMATHGoogle Scholar
  4. 4.
    Christiansen, M., Fagerholt, K.: Ship routing and scheduling in industrial and tramp shipping. In: Toth, P., Vigo, D. (eds.) Vehicle Routing: Problems, Methods, and Applications, Chap. 13, 2nd edn., pp. 381–408. No. Vlcc, Society for Industrial and Applied Mathematics, Philadelphia (2014).  https://doi.org/10.1137/1.9781611973594.ch13CrossRefGoogle Scholar
  5. 5.
    Christiansen, M., Fagerholt, K., Nygreen, B., Ronen, D.: Ship routing and scheduling in the new millennium. Eur. J. Oper. Res. 228(3), 467–483 (2013).  https://doi.org/10.1016/j.ejor.2012.12.002MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Christiansen, M., Fagerholt, K., Ronen, D.: Ship routing and scheduling: status and perspectives. Transp. Sci. 38(1), 1–18 (2004).  https://doi.org/10.1287/trsc.1030.0036CrossRefGoogle Scholar
  7. 7.
    Friske, M.W., Buriol, L.S.: A relax-and-fix algorithm for a maritime inventory routing problem. Computational Logistics. LNCS, vol. 10572, pp. 270–284. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68496-3_18CrossRefGoogle Scholar
  8. 8.
    Goel, V., Furman, K.C., Song, J.H., El-Bakry, A.S.: Large neighborhood search for LNG inventory routing. J. Heuristics 18(6), 821–848 (2012).  https://doi.org/10.1007/s10732-012-9206-6CrossRefGoogle Scholar
  9. 9.
    Jiang, Y., Grossmann, I.E.: Alternative mixed-integer linear programming models of a maritime inventory routing problem. Comput. Chem. Eng. 77, 147–161 (2015).  https://doi.org/10.1016/j.compchemeng.2015.03.005CrossRefGoogle Scholar
  10. 10.
    Lalla-Ruiz, E., Voß, S., Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, J.M.: A popmusic-based approach for the berth allocation problem under time-dependent limitations. Ann. Oper. Res. 253(2), 871–897 (2017).  https://doi.org/10.1007/s10479-015-2055-6MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Papageorgiou, D.J., Keha, A.B., Nemhauser, G.L., Sokol, J.: Two-stage decomposition algorithms for single product maritime inventory routing. INFORMS J. Comput. 26(4), 825–847 (2014).  https://doi.org/10.1287/ijoc.2014.0601MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Papageorgiou, D.J., Nemhauser, G.L., Sokol, J., Cheon, M.S., Keha, A.B.: MIRPLib - a library of maritime inventory routing problem instances: survey, core model, and benchmark results. Eur. J. Oper. Res. 235(2), 350–366 (2014).  https://doi.org/10.1016/j.ejor.2013.12.013MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming. Springer Science & Business Media, New York (2006).  https://doi.org/10.1007/0-387-33477-7CrossRefzbMATHGoogle Scholar
  14. 14.
    Savelsbergh, M., Song, J.H.: An optimization algorithm for the inventory routing problem with continuous moves. Comput. Oper. Res. 35(7), 2266–2282 (2008).  https://doi.org/10.1016/j.cor.2006.10.020MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Song, J.H., Furman, K.C.: A maritime inventory routing problem: practical approach. Comput. Oper. Res. 40(3), 657–665 (2013).  https://doi.org/10.1016/j.cor.2010.031CrossRefzbMATHGoogle Scholar
  16. 16.
    Taillard, É.D., Voß, S.: Popmusic-partial optimization metaheuristic under special intensification conditions. Essays and surveys in metaheuristics, pp. 613–629. Springer, Boston (2002).  https://doi.org/10.1007/978-1-4615-1507-4_27CrossRefGoogle Scholar
  17. 17.
    Uggen, K.T., Fodstad, M., Nørstebø, V.S.: Using and extending fix-and-relax to solve maritime inventory routing problems. TOP 21(2), 355–377 (2013).  https://doi.org/10.1007/s11750-011-0174-zMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de InformáticaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations