Advertisement

Pulmonary Manifestations of Other Well-Defined Immunodeficiencies

  • Man Amanat
  • Mona Salehi
  • Nima Rezaei
Chapter

Abstract

To date, various conditions with immunodeficiency accompanied by different systemic features have been classified as other well-defined primary immunodeficiencies (PIDs). Many aspects of these diseases remain unknown due to their rarity. Furthermore, in clinical care, it was pointed out that morbidities of disorders continued to be under-recognized and sometimes under-managed. Respiratory manifestations are common in PIDs including other well-defined ones. However, they remained underappreciated in literature, while they are one of the commonest causes of death among this population. Recurrent upper and lower respiratory tract infections as the result of immunodeficiency are the most frequent respiratory features in these diseases. By underestimating these infections, different complications such as bronchiectasis may occur which can lead to poorer prognosis and even early death of patients. Intravenous immunoglobulin (IVIg) therapy is now a good option in treatment and prevention of these infections. Also, stem cell transplant is a choice for long-term prevention due to repairing immune system. Other reported pathologic respiratory tract features in individuals with other well-defined PIDs include asthma and malignancies. Overall, in this chapter, we review different conditions in other well-defined PIDs which their respiratory manifestations were reported in literature.

Keywords

Ataxia telangiectasia Nijmegen breakage syndrome Bloom syndrome Wolf-Hirschhorn syndrome Job’s syndrome Wiskott-Aldrich syndrome Netherton syndrome Dyskeratosis congenita 

References

  1. 1.
    Gennery AR, Marodi L, Ziegler JB, Español T, Grimbacher B. Other well-defined immunodeficiencies. In: Rezaei N, Aghamohammadi A, Notarangelo L, editors. Primary immunodeficiency diseases. Berlin/Heidelberg: Springer; 2017.Google Scholar
  2. 2.
    Comel M. Ichthyosis linearis circumflexa. Dermatologica. 1949;98:133–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Boder E, Sedgwick RP. A familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection: a preliminary report on 7 children, an autopsy, and a case history. Univ South Calif Med Bull. 1957;9:15–28.Google Scholar
  4. 4.
    Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet. 1986;39:573–83.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11:159.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lin DD, Barker PB, Lederman HM, Crawford TO. Cerebral abnormalities in adults with ataxia-telangiectasia. AJNR Am J Neuroradiol. 2014;35:119–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Lefton-Greif MA, Crawford TO, Winkelstein JA, Loughlin GM, Koerner CB, Zahurak M, Lederman HM. Oropharyngeal dysphagia and aspiration in patients with ataxia-telangiectasia. J Pediatr. 2000;136:225–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Nissenkorn A, Levy-Shraga Y, Banet-Levi Y, Lahad A, Sarouk I, Modan-Moses D. Endocrine abnormalities in ataxia telangiectasia: findings from a national cohort. Pediatr Res. 2016;79:889–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Connelly PJ, Smith N, Chadwick R, Exley AR, Shneerson JM, Pearson ER. Recessive mutations in the cancer gene Ataxia Telangiectasia mutated (ATM), at a locus previously associated with metformin response, cause dysglycaemia and insulin resistance. Diabet Med. 2016;33:371–5.PubMedCrossRefGoogle Scholar
  10. 10.
    McGrath-Morrow SA, Sterni L, McGinley B, Lefton-Greif MA, Rosquist K, Lederman H. Polysomnographic values in adolescents with ataxia telangiectasia. Pediatr Pulmonol. 2008;43:674–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Mostofsky SH, Kunze JC, Cutting LE, Lederman HM, Denckla MB. Judgment of duration in individuals with ataxia-telangiectasia. Dev Neuropsychol. 2000;17:63–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Suarez F, Mahlaoui N, Canioni D, Andriamanga C, Dubois d’Enghien C, Brousse N, Jais JP, Fischer A, Hermine O, Stoppa-Lyonnet D. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J Clin Oncol. 2014;33:202–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Driessen GJ, Jspeert H, Weemaes CM, Haraldsson Á, Trip M, Warris A, van der Flier M, Wulffraat N, Verhagen MM, Taylor MA, van Zelm MC. Antibody deficiency in patients with ataxia telangiectasia is caused by disturbed B- and T-cell homeostasis and reduced immune repertoire diversity. J Allergy Clin Immunol. 2013;131:1367–75.e9.PubMedCrossRefGoogle Scholar
  14. 14.
    Kraus M, Lev A, Simon AJ, Levran I, Nissenkorn A, Levi YB, Berkun Y, Efrati O, Amariglio N, Rechavi G, Somech R. Disturbed B and T cell homeostasis and neogenesis in patients with ataxia telangiectasia. J Clin Immunol. 2014;34:561–72.PubMedCrossRefGoogle Scholar
  15. 15.
    Pasini AM, Gagro A, Roić G, Vrdoljak O, Lujić L, Žutelija-Fattorini M. Ataxia telangiectasia and juvenile idiopathic arthritis. Pediatrics. 2017;139:e20161279.PubMedCrossRefGoogle Scholar
  16. 16.
    Patiroglu T, Gungor H, Unal E. Autoimmune diseases detected in children with primary immunodeficiency diseases: results from a reference centre at middle anatolia. Acta Microbiol Immunol Hung. 2012;59:343–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Boder E. Ataxia–telangiectasia: some historic, clinical and pathologic observations. Birth Defects Orig Artic Ser. 1975;11:255–70.PubMedGoogle Scholar
  18. 18.
    Schroeder SA, Zielen S. Infections of the respiratory system in patients with ataxia–telangiectasia. Pediatr Pulmonol. 2014;49:389–99.PubMedCrossRefGoogle Scholar
  19. 19.
    Vilozni D, Lavie M, Sarouk I, Bar-Aluma BE, Dagan A, Ashkenazi M, Ofek M, Efrati O. FVC deterioration, airway obstruction determination, and life span in Ataxia telangiectasia. Respir Med. 2015;109:890–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Berkun Y, Vilozni D, Levi Y, Borik S, Waldman D, Somech R, Nissenkorn A, Efrati O. Reversible airway obstruction in children with ataxia telangiectasia. Pediatr Pulmonol. 2010;45:230–5.PubMedGoogle Scholar
  21. 21.
    McGrath-Morrow SA, Collaco JM, Detrick B, Lederman HM. Serum interleukin-6 levels and pulmonary function in ataxia-telangiectasia. J Pediatr. 2016;171:256–61.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Amanat M, Salehi M, Rezaei N. Neurological and psychiatric disorders in psoriasis. Rev Neurosci. 2018;29:805–13. https://doi.org/10.1515/revneuro-2017-0108.PubMedCrossRefGoogle Scholar
  23. 23.
    Weemaes CM, Hustinx TW, Scheres JM, van Munster PJ, Bakkeren JA, Taalman RD. A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatr Scand. 1981;70:557–64.PubMedCrossRefGoogle Scholar
  24. 24.
    Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, Beckmann G, Seemanová E, Cooper PR, Nowak NJ, Stumm M. Nibrin, a novel DNA double strand break protein, is mutated in Nijmegen breakage syndrome. Cell. 1998;93:467–76.PubMedCrossRefGoogle Scholar
  25. 25.
    Varon R, Seemanova E, Chrzanowska K, Hnateyko O, Piekutowska-Abramczuk D, Krajewska-Walasek M. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three slav populations. Eur J Hum Genet. 2000;8:900–2.PubMedCrossRefGoogle Scholar
  26. 26.
    Varon R, Demuth I, Digweed M. Nijmegen breakage syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews®. Seattle: University of Washington; 1993. (updated 2017).Google Scholar
  27. 27.
    Wolska-Kuśnierz B, Gregorek H, Chrzanowska K, Piątosa B, Pietrucha B, Heropolitańska-Pliszka E, Pac M, Klaudel-Dreszler M, Kostyuchenko L, Pasic S, Marodi L. Nijmegen breakage syndrome: clinical and immunological features, long-term outcome and treatment options–a retrospective analysis. J Clin Immunol. 2015;35:538–49.PubMedCrossRefGoogle Scholar
  28. 28.
    Bloom D. Congenital telangiectatic erythema resembling lupus erythematosus in dwarfs; probably a syndrome entity. AMA Am J Dis Child. 1954;88:754–8.PubMedGoogle Scholar
  29. 29.
    Sanz MM, German J. Bloom’s syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, Ledbetter N, Hand JL, editors. GeneReviews®. Seattle: University of Washington; 2006. (updated 2016).Google Scholar
  30. 30.
    Cunniff C, Bassetti JA, Ellis NA. Bloom's syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017;8:4–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Postema FA, Hopman SM, Hennekam RC, Merks JH. Consequences of diagnosing a tumor predisposition syndrome in children with cancer: a literature review. Pediatr Blood Cancer. 2018;65:e26718.CrossRefGoogle Scholar
  32. 32.
    Schoenaker MH, Henriet SS, Zonderland J, van Deuren M, Pan-Hammarström Q, Posthumus-van Sluijs SJ, Pico-Knijnenburg I, Weemaes CM, IJspeert H. Immunodeficiency in Bloom’s syndrome. J Clin Immunol. 2018;38:35–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Relhan V, Sinha S, Bhatnagar T, Garg VK, Kochhar A. Bloom syndrome with extensive pulmonary involvement in a child. Indian J Dermatol. 2015;60:217.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Tiepolo L, Maraschio P, Gimelli G, Cuoco C, Gargani GF. Romano C multibranched chromosomes 1, 9, and 16 in a patient with combined IgA and IgE deficiency. Hum Genet. 1979;51:127–37.PubMedCrossRefGoogle Scholar
  35. 35.
    Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 1999;402:187–91.PubMedCrossRefGoogle Scholar
  36. 36.
    de Greef JC, Wang J, Balog J, den Dunnen JT, Frants RR, Straasheijm KR, Aytekin C, van der Burg M, Duprez L, Ferster A, et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet. 2011;88:796–804.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, Unoki M, Yoshihara M, Suyama M, Sun Y, Lemmers RJ. Mutations in CDCA7 and HELLS cause immunodeficiency–centromeric instability–facial anomalies syndrome. Nat Commun. 2015;6:7870.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sterlin D, Velasco G, Moshous D, Touzot F, Mahlaoui N, Fischer A, Suarez F, Francastel C, Picard C. Genetic, cellular and clinical features of ICF syndrome: a French national survey. J Clin Immunol. 2016;36:149–59.PubMedCrossRefGoogle Scholar
  39. 39.
    Weemaes CM, Van Tol MJ, Wang J, Van Ostaijen-Ten Dam MM, Van Eggermond MC, Thijssen PE, Aytekin C, Brunetti-Pierri N, Van Der Burg M, Davies EG, Ferster A. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet. 2013;21:1219–25.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    von Bernuth H, Ravindran E, Du H, Fröhler S, Strehl K, Krämer N, Issa-Jahns L, Amulic B, Ninnemann O, Xiao MS, Eirich K. Combined immunodeficiency develops with age in immunodeficiency-centromeric instability-facial anomalies syndrome 2 (ICF2). Orphanet J Rare Dis. 2014;9:116.CrossRefGoogle Scholar
  41. 41.
    Gössling KL, Schipp C, Fischer U, Babor F, Koch G, Schuster FR, Dietzel-Dahmen J, Wieczorek D, Borkhardt A, Meisel R, Kuhlen M. Hematopoietic stem cell transplantation in an infant with immunodeficiency, centromeric instability, and facial anomaly syndrome. Front Immunol. 2017;8:773.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Nicolaides NC, Carter KC, Shell BK, Papadopoulos N, Vogelstein B, Kinzler KW. Genomic organization of the human PMS2 gene family. Genomics. 1995;30:195–206.CrossRefGoogle Scholar
  43. 43.
    Pal T, Permuth-Wey J, Sellers TA. A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer. 2008;113:733–42.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Collins SL, Hervé R, Keevil CW, Blaydes JP, Webb JS. Down-regulation of DNA mismatch repair enhances initiation and growth of neuroblastoma and brain tumour multicellular spheroids. PLoS One. 2011;6:e28123.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ponti G, Castellsagué E, Ruini C, Percesepe A, Tomasi A. Mismatch repair genes founder mutations and cancer susceptibility in Lynch syndrome. Clin Genet. 2015;87:507–16.PubMedCrossRefGoogle Scholar
  46. 46.
    Dudley B, Brand RE, Thull D, Bahary N, Nikiforova MN, Pai RK. Germline MLH1 mutations are frequently identified in Lynch syndrome patients with colorectal and endometrial carcinoma demonstrating isolated loss of PMS2 immunohistochemical expression. Am J Surg Pathol. 2015;39:1114–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Gill S, Lindor NM, Burgart LJ, Smalley R, Leontovich O, French AJ, Goldberg RM, Sargent DJ, Jass JR, Hopper JL, Jenkins MA. Isolated loss of PMS2 expression in colorectal cancers: frequency, patient age, and familial aggregation. Clin Cancer Res. 2005;11:6466–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Alpert L, Pai RK, Srivastava A, McKinnon W, Wilcox R, Yantiss RK, Arcega R, Wang HL, Robert ME, Liu X, Pai RK. Colorectal carcinomas with isolated loss of PMS2 staining by immunohistochemistry. Arch Pathol Lab Med. 2018;142:523–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Ten Broeke SW, van Bavel TC, Jansen AM, Gómez-García E, Hes FJ, van Hest LP, Letteboer TG, Olderode-Berends MJ, Ruano D, Spruijt L, Suerink M. Molecular background of colorectal tumors from patients with Lynch syndrome associated with germline variants in PMS2. Gastroenterology. 2018;  https://doi.org/10.1053/j.gastro.2018.05.020.PubMedCrossRefGoogle Scholar
  50. 50.
    Abolhassani H, Akbari F, Mirminachi B, Bazregari S, Hedayat E, Rezaei N, Aghamohammadi A. Morbidity and mortality of Iranian patients with hyper IgM syndrome: a clinical analysis. Iran J Immunol. 2014;11:123–33.PubMedGoogle Scholar
  51. 51.
    Péron S, Metin A, Gardès P, Alyanakian MA, Sheridan E, Kratz CP, Fischer A, Durandy A. Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. J Exp Med. 2008;205:2465–72.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Krauthammer A, Lahad A, Goldberg L, Sarouk I, Weiss B, Somech R, Soudack M, Pessach IM. Elevated IgM levels as a marker for a unique phenotype in patients with Ataxia telangiectasia. BMC Pediatr. 2018;18:185.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Piątosa B, van der Burg M, Siewiera K, Pac M, van Dongen JJ, Langerak AW, Chrzanowska KH, Bernatowska E. The defect in humoral immunity in patients with Nijmegen breakage syndrome is explained by defects in peripheral B lymphocyte maturation. Cytometry A. 2012;81:835–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Cooper H, Hirschhorn K. Apparent deletion of short arms of one chromosome (4 or 5) in a child with defects of midline fusion. Mamm Chrom Nwsl. 1961;4:14.Google Scholar
  55. 55.
    Wolf U, Reinwein H, Porsch R, Schröter R, Baitsch H. Defizienz an den kurzen Armen eines Chromosomes Nr. 4. Humangenetik. 1965;1:397–413.PubMedCrossRefGoogle Scholar
  56. 56.
    Shannon NL, Maltby EL, Rigby AS, Quarrell OWJ. An epidemiological study of Wolf-Hirschhorn syndrome: life expectancy and cause of mortality. J Med Genet. 2001;38:674–9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Zollino M, Lecce R, Fischetto R, Murdolo M, Faravelli F, Selicorni A, Buttè C, Memo L, Capovilla G, Neri G. Mapping the Wolf-Hirschhorn syndrome phenotype outside the currently accepted WHS critical region and defining a new critical region, WHSCR-2. Am J Hum Genet. 2003;75:590–7.CrossRefGoogle Scholar
  58. 58.
    Battaglia A, Carey JC, South ST. Wolf-Hirschhorn syndrome: a review and update. Am J Med Genet C Semin Med Genet. 2015;169:216–23.PubMedCrossRefGoogle Scholar
  59. 59.
    Battaglia A, Filippi T, South ST, Carey JC. Spectrum of epilepsy and electroencephalogram patterns in Wolf–Hirschhorn syndrome: experience with 87 patients. Dev Med Child Neurol. 2009;51:373–80.PubMedCrossRefGoogle Scholar
  60. 60.
    Hanley-Lopez J, Estabrooks LL, Stiehm ER. Antibody deficiency in Wolf-Hirschhorn syndrome. J Pediatr. 1998;133:141–3.PubMedCrossRefGoogle Scholar
  61. 61.
    Rauch A, Schellmoser S, Kraus C, Dörr HG, Trautmann U, Altherr MR, Pfeiffer RA, Reis A. First known microdeletion within the Wolf-Hirschhorn syndrome critical region refines genotype–phenotype correlation. Am J Med Genet. 2001;99:338–42.PubMedCrossRefGoogle Scholar
  62. 62.
    Paradowska-Stolarz AM. Wolf-Hirschhorn syndrome (WHS)-literature review on the features of the syndrome. Adv Clin Exp Med. 2014;23:485–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Davis SD, Schaller J, Wdegewood RJ. Job’s syndrome. Recurrent, “cold”, staphylococcal abscesses. Lancet. 1966;1:1013–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Buckley RH, Wray BB, Belmaker EZ. Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics. 1972;49:59–70.PubMedGoogle Scholar
  65. 65.
    Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, Kawamura N, Ariga T, Pasic S, Stojkovic O, Metin A, Karasuyama H. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–62.PubMedCrossRefGoogle Scholar
  66. 66.
    Engelhardt KR, McGhee S, Winkler S, Sassi A, Woellner C, Lopez-Herrera G, Chen A, Kim HS, Lloret MG, Schulze I, Ehl S. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol. 2009;124:1289–302.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Woellner C, Schäffer AA, Puck JM, Renner ED, Knebel C, Holland SM, Plebani A, Grimbacher B. The hyper IgE syndrome and mutations in TYK2. Immunity. 2007;26:535.PubMedCrossRefGoogle Scholar
  68. 68.
    Yang L, Fliegauf M, Grimbacher B. Hyper-IgE syndromes: reviewing PGM3 deficiency. Curr Opin Pediatr. 2014;26:697–703.PubMedCrossRefGoogle Scholar
  69. 69.
    Chandesris MO, Melki I, Natividad A, Puel A, Fieschi C, Yun L, Thumerelle C, Oksenhendler E, Boutboul D, Thomas C, Hoarau C. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome molecular, cellular, and clinical features from a French national survey. Medicine (Baltimore). 2012;91:e1–19.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Zhang Q, Davis JC, Dove CG, Su HC. Genetic, clinical, and laboratory markers for DOCK8 immunodeficiency syndrome. Dis Markers. 2010;29:131–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Renner ED, Puck JM, Holland SM, Schmitt M, Weiss M, Frosch M, Bergmann M, Davis J, Belohradsky BH, Grimbacher B. Autosomal recessive hyperimmunoglobulin E syndrome: a distinct disease entity. J Pediatr. 2004;144:93–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Mogensen TH. STAT3 and the hyper-IgE syndrome: clinical presentation, genetic origin, pathogenesis, novel findings and remaining uncertainties. JAKSTAT. 2013;2:e23435.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Jiao H, Toth B, Erdos M, Fransson I, Rakoczi E, Balogh I, Magyarics Z, Derfalvi B, Csorba G, Szaflarska A, Megarbane A, Akatcherian C, Dbaibo G, Rajnavolgyi E, Hammarstrom L, Kere J, Lefranc G, Marodi L. Novel and recurrent STAT3 mutations in hyper-IgE syndrome patients from different ethnic groups. Mol Immunol. 2008;46:202–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Schimke LF, Sawalle-Belohradsky J, Roesler J, Wollenberg A, Rack A, Borte M, Rieber N, Cremer R, Maass E, Dopfer R, Reichenbach J, Wahn V, Hoenig M, Jansson AF, Roesen-Wolff A, Schaub B, Seger R, Hill HR, Ochs HD, Torgerson TR, Belohradsky BH, Renner ED. Diagnostic approach to the hyper-IgE syndromes: immunologic and clinical key findings to differentiate hyper-IgE syndromes from atopic dermatitis. J Allergy Clin Immunol. 2010;126:611–617.e1.PubMedCrossRefGoogle Scholar
  75. 75.
    Woellner C, Gertz EM, Schaffer AA, Lagos M, Perro M, Glocker EO, Pietrogrande MC, Cossu F, Franco JL, Matamoros N, Pietrucha B, Heropolitanska-Pliszka E, Yeganeh M, Moin M, Espanol T, Ehl S, Gennery AR, Abinun M, Breborowicz A, Niehues T, Kilic SS, Junker A, Turvey SE, Plebani A, Sanchez B, Garty BZ, Pignata C, Cancrini C, Litzman J, Sanal O, Baumann U, Bacchetta R, Hsu AP, Davis JN, Hammarstrom L, Davies EG, Eren E, Arkwright PD, Moilanen JS, Viemann D, Khan S, Marodi L, Cant AJ, Freeman AF, Puck JM, Holland SM, Grimbacher B. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol. 2010;125:424–432.e8.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Aydin SE, Kilic SS, Aytekin C, Kumar A, Porras O, Kainulainen L, Kostyuchenko L, Genel F, Kütükcüler N, Karaca N, Gonzalez-Granado L. DOCK8 deficiency: clinical and immunological phenotype and treatment options-a review of 136 patients. J Clin Immunol. 2015;35:189–98.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Tsuge I, Ito K, Ohye T, Kando N, Kondo Y, Nakajima Y, Inuo C, Kurahashi H, Urisu A. Acute eosinophilic pneumonia occurring in a dedicator of cytokinesis 8 (DOCK8) deficient patient. Pediatr Pulmonol. 2014;49:E52–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Sassi A, Lazaroski S, Wu G, Haslam SM, Fliegauf M, Mellouli F, Patiroglu T, Unal E, Ozdemir MA, Jouhadi Z, Khadir K. Hypomorphic homozygous mutations in & phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allergy Clin Immunol. 2014;133:1410–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S, Lamborn IT, Jing H, Kim ES, Biancalana M, Wolfe LA, DiMaggio T. Autosomal recessive phosphoglucomutase & 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol. 2014;133:1400–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Wiskott A. Familiarer, angeborener Morbus Werlhofii? Monatsschr Kinderheilkd. 1937;68:212–6.Google Scholar
  81. 81.
    Puck JM, Candotti F. Lessons from the Wiskott-Aldrich syndrome. N Engl J Med. 2006;355:1759–61.PubMedCrossRefGoogle Scholar
  82. 82.
    Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994;78:635–44.CrossRefGoogle Scholar
  83. 83.
    Kirchhausen T, Rosen FS. Disease mechanism: unravelling Wiskott–Aldrich syndrome. Curr Biol. 1996;6:676–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr. 1994;125:876–85.PubMedCrossRefGoogle Scholar
  85. 85.
    Villa A, Notarangelo L, Macchi P, Mantuano E, Cavagni G, Brugnoni D, Strina D, Patrosso MC, Ramenghi U, Sacco MG, Ugazio A. X–linked thrombocytopenia and Wiskott–Aldrich syndrome are allelic diseases with mutations in the WASP gene. Nat Genet. 1995;9:414–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhu Q, Zhang M, Blaese RM, Derry JM, Junker A, Francke U, Chen SH, Ochs HD. The Wiskott-Aldrich syndrome and X-linked congenital thrombocytopenia are caused by mutations of the same gene. Blood. 1995;86:3797–804.PubMedGoogle Scholar
  87. 87.
    Ancliff PJ, Blundell MP, Cory GO, Calle Y, Worth A, Kempski H, Burns S, Jones GE, Sinclair J, Kinnon C, Hann IM. Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood. 2006;108:2182–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Beel K, Cotter MM, Blatny J, Bond J, Lucas G, Green F, Vanduppen V, Leung DW, Rooney S, Smith OP, Rosen MK. A large kindred with X-linked neutropenia with an I294T mutation of the Wiskott-Aldrich syndrome gene. Br J Haematol. 2009;144:120–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Devriendt K, Kim AS, Mathijs G, Frints SG, Schwartz M, Van den Oord JJ, Verhoef GE, Boogaerts MA, Fryns JP, You D, Rosen MK. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet. 2001;27:313–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Ochs HD, Slichter SJ, Harker LA, Von Behrens WE, Clark RA, Wedgwood RJ. The Wiskott-Aldrich syndrome: studies of lymphocytes, granulocytes, and. Blood. 1980;55:243–52.PubMedGoogle Scholar
  91. 91.
    Park JY, Kob M, Prodeus AP, Rosen FS, Shcherbina A, Remold-O’Donnell E. Early deficit of lymphocytes in Wiskott–Aldrich syndrome: possible role of WASP in human lymphocyte maturation. Clin Exp Immunol. 2004;136:104–10.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Westerberg L, Larsson M, Hardy SJ, Fernández C, Thrasher AJ, Severinson E. Wiskott-Aldrich syndrome protein deficiency leads to reduced B-cell adhesion, migration, and homing, and a delayed humoral immune response. Blood. 2005;105:1144–52.PubMedCrossRefGoogle Scholar
  93. 93.
    Recher M, Burns SO, Miguel A, Volpi S, Dahlberg C, Walter JE, Moffitt K, Mathew D, Honke N, Lang PA, Patrizi L. B cell–intrinsic deficiency of the Wiskott-Aldrich syndrome protein causes severe abnormalities of the peripheral B-cell compartment in mice. Blood. 2012;119:2819–28.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Westerberg LS, Dahlberg C, Baptista M, Moran CJ, Detre C, Keszei M, Eston MA, Alt FW, Terhorst C, Notarangelo LD, Snapper SB. Wiskott-Aldrich syndrome protein (WASP) and N-WASP are critical for peripheral B cell development and function. Blood. 2012;119:3966–74.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Dupuis-Girod S, Medioni J, Haddad E, Quartier P, Cavazzana-Calvo M, Le Deist F, de Saint BG, Delaunay J, Schwarz K, Casanova JL, Blanche S. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics. 2003;111:e622–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Blaese RM, Strober W, Brown R, Waldmann T. The Wiskott-Aldrich syndrome a disorder with a possible defect in antigen processing or recognition. Lancet. 1968;291:1056–61.CrossRefGoogle Scholar
  97. 97.
    Cooper MD, Chase HP, Lowman JT, Krivit W, Good RA. Wiskott-Aldrich syndrome: an immunologic deficiency disease involving the afferent limb of immunity. Am J Med. 1968;44:499–513.PubMedCrossRefGoogle Scholar
  98. 98.
    Westerberg LS, Miguel A, Wermeling F, Ochs HD, Karlsson MC, Snapper SB, Notarangelo LD. WASP confers selective advantage for specific hematopoietic cell populations and serves a unique role in marginal zone B-cell homeostasis and function. Blood. 2008;112:4139–47.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Jeanes AC, Owens CM. Chest imaging in the immunocompromised child. Paediatr Respir Rev. 2002;3:59–69.PubMedGoogle Scholar
  100. 100.
    Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, Bonafé JL, Wilkinson J, Taïeb A, Barrandon Y, Harper JI. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet. 2000;25:141–2.PubMedCrossRefGoogle Scholar
  101. 101.
    Hachem JP, Wagberg F, Schmuth M, Crumrine D, Lissens W, Jayakumar A, Houben E, Mauro TM, Leonardsson G, Brattsand M, Egelrud T. Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Invest Dermatol. 2006;126:1609–21.PubMedCrossRefGoogle Scholar
  102. 102.
    Renner ED, Hartl D, Rylaarsdam S, Young ML, Monaco-Shawver L, Kleiner G, Markert ML, Stiehm ER, Belohradsky BH, Upton MP, Torgerson TR. Comel-Netherton syndrome defined as primary immunodeficiency. J Allergy Clin Immunol. 2009;124:536–43.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ming JE, Stiehm ER, Graham JM Jr. Syndromes associated with immunodeficiency. Adv Pediatr Infect Dis. 1999;46:271–351.Google Scholar
  104. 104.
    Kutsal E, Gücüyener K, Bakirtaş A, Eldeş N, Oztaş M, Dursun A. Youngest netherton patient with infantile asthma. Tuberk Toraks. 2008;56:104–8.PubMedGoogle Scholar
  105. 105.
    Okulu E, Tunc G, Erdeve O, Mumcu Y, Atasay B, Ince E, Arsan S. Netherton syndrome: a neonatal case with respiratory insufficiency. Arch Argent Pediatr. 2018;116:e609–11.PubMedGoogle Scholar
  106. 106.
    Macknet CA, Morkos A, Job L, Garberoglio MC, Clark RD, Macknet KD Jr, Peverini RL. An infant with Netherton syndrome and persistent pulmonary hypertension requiring extracorporeal membrane oxygenation. Pediatr Dermatol. 2008;25:368–72.PubMedCrossRefGoogle Scholar
  107. 107.
    Engman MF. A unique case of reticular pigmentation of the skin with atrophy. Arch Bleg Dermatol Syphiligr. 1926;13:685–7.CrossRefGoogle Scholar
  108. 108.
    Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, Poustka A, Dokal I. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 1998;19:32–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Walne AJ, Vulliamy T, Marrone A, Beswick R, Kirwan M, Masunari Y, Al-Qurashi FH, Aljurf M, Dokal I. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet. 2007;16:1619–29.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature. 2001;413:432–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Connor JM, Teague RH. Dyskeratosis congenita. Report of a large kindred. Br J Dermatol. 1981;105:321–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Drachtman RA, Alter BP. Dyskeratosis congenita: clinical and genetic heterogeneity. Report of a new case and review of the literature. Am J Pediatr Hematol Oncol. 1992;14:297–304.PubMedCrossRefGoogle Scholar
  113. 113.
    Dokal I. Dyskeratosis congenita in all its forms. Br J Hematol. 2000;110:768–79.CrossRefGoogle Scholar
  114. 114.
    Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in dyskeratosis congenita. Blood. 2009;113:6549–57.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Jyonouchi S, Forbes L, Ruchelli E, Sullivan KE. Dyskeratosis congenita: a combined immunodeficiency with broad clinical spectrum–a single-center pediatric experience. Pediatr Allergy Immunol. 2011;22:313–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Borggraefe I, Koletzko S, Arenz T, Fuehrer M, Hoffmann F, Dokal I, Vulliamy T, Weiler V, Griese M, Belohradsky BH, Lang T. Severe variant of x-linked dyskeratosis congenita (hoyeraal-hreidarsson syndrome) causes significant enterocolitis in early infancy. J Pediatr Gastroenterol Nutr. 2009;49:359–63.PubMedCrossRefGoogle Scholar
  117. 117.
    Ballew BJ, Savage SA. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol. 2013;6:327–37.PubMedCrossRefGoogle Scholar
  118. 118.
    Gordijn SJ, Brand PL. A boy with breathlessness, digital clubbing and central cyanosis. Eur J Pediatr. 2004;163:129–30.PubMedCrossRefGoogle Scholar
  119. 119.
    Samuel BP, Duffner UA, Abdel-Mageed AS, Vettukattil JJ. Pulmonary arteriovenous malformations in dyskeratosis congenita. Pediatr Dermatol. 2015;32:e165–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Khincha PP, Bertuch AA, Agarwal S, Townsley DM, Young NS, Keel S, Shimamura A, Boulad F, Simoneau T, Justino H, Kuo C. Pulmonary arteriovenous malformations: an uncharacterised phenotype of dyskeratosis congenita and related telomere biology disorders. Eur Respir J. 2017;49:1601640.CrossRefGoogle Scholar
  121. 121.
    Yabe M, Yabe H, Hattori K, Morimoto T, Hinohara T, Takakura I, Shimizu T, Shimamura K, Tang X, Kato S. Fatal interstitial pulmonary disease in a patient with dyskeratosis congenita after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1997;19:389–92.PubMedCrossRefGoogle Scholar
  122. 122.
    Sorge C, Pereboeva L, Westin E, Harris WT, Kelly DR, Goldman F. Pulmonary complications post hematopoietic stem cell transplant in dyskeratosis congenita: analysis of oxidative stress in lung fibroblasts. Bone Marrow Transplant. 2017;52:765–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Giri N, Ravichandran S, Fontana J, Alter BP, Khincha P, Savage SA. Prognostic significance of pulmonary function test abnormalities in patients with dyskeratosis congenita. Blood. 2016;128:2672.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Man Amanat
    • 1
    • 2
  • Mona Salehi
    • 1
    • 2
  • Nima Rezaei
    • 3
    • 4
    • 5
  1. 1.NeuroImmunology Research Association (NIRA)Universal Scientific Education and Research Network (USERN)TehranIran
  2. 2.Students’ Scientific Research Center (SSRC)Tehran University of Medical Sciences (TUMS)TehranIran
  3. 3.Research Center for Immunodeficiencies, Children’s Medical CenterTehran University of Medical Sciences (TUMS)TehranIran
  4. 4.Department of ImmunologySchool of Medicine, Tehran University of Medical Sciences (TUMS)TehranIran
  5. 5.Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran

Personalised recommendations