Pulmonary Manifestations of Defects in Innate Immunity

  • Persio Roxo-JuniorEmail author
  • Isabela Mina
  • Catherine Sonaly Ferreira Martins


Primary immunodeficiency diseases (PIDs) comprise a genetically heterogeneous group of rare disorders that are caused by genetic defects or developmental defects of the immune system.

PIDs are classified and divided into nine groups according to a combination of mechanistic and clinical characteristics. One of these categories includes defects of innate immunity.

The innate immunity takes part of immune response, together with adaptive immunity.

The components of innate immunity are represented by epithelial barriers, antimicrobial peptides, soluble factors (chemokines and proteins of the complement system), and cell elements (neutrophils, monocytes, and natural killer cells). The humoral and cellular components of the innate immune system are diverse, and their responses are initiated by pattern recognition receptors such as Toll-like receptors and NOD-like receptors, which recognize the pathogen-associated molecular patterns.

The innate immune responses play a fundamental role in the control of infections by interfering with the replication and/or viability of the pathogen, in addition to favoring the development of adaptive immunity.

The molecular level and the role of the innate immunity in the defense against several kinds of pathogens have revealed its importance in the physiopathology of PID.

The aim of this chapter is to highlight the main respiratory manifestations that can affect patients with defects in innate immunity.


Innate immunity Immunodeficiency without anhidrotic ectodermal dysplasia Herpes simplex encephalitis WHIM syndrome Epidermodysplasia verruciformis Autoimmune polyendocrinopathy Pulmonary alveolar proteinosis Trypanosomiasis Splenic hypoplasia 


  1. 1.
    Hambleton S, Goodbourn S, Young DF, Dickinson P, Mohamad SM, Valappil M, et al. STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci. 2013;110(8):3053–8.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Turvey SE, Broide DH. Innate immunity. J Allergy Clin Immunol. 2010;125(2):S24–32.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Courtois G, Smahi A, Reichenbach J, Döffinger R, Cancrini C, Bonnet M, et al. A hypermorphic IκBα mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest. 2003;112(7):1108–15.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225–60.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Picard C, Casanova J-L, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin Microbiol Rev. 2011;24(3):490–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Abinun M, Flood T, Cant A, Spickett G, Appleton A. Anhidrotic ectodermal dysplasia associated with specific antibody deficiency. Eur J Pediatr. 1996;155(2):146–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Boisson B, Puel A, Picard C, Casanova J-L. Human IκBα gain of function: a severe and syndromic immunodeficiency. J Clin Immunol. 2017;37(5):397–412.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Sancho-Shimizu V, de Diego RP, Jouanguy E, Zhang S-Y, Casanova J-L. Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol. 2011;1(6):487–96.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zinngrebe J, Rieser E, Taraborrelli L, Peltzer N, Hartwig T, Ren H, et al. LUBAC deficiency perturbs TLR3 signaling to cause immunodeficiency and autoinflammation. J Exp Med. 2016;213(12):2671–89.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Tokunaga F. Linear ubiquitination-mediated NF-κB regulation and its related disorders. J Biochem. 2013;154(4):313–23.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Aksentijevich I, Zhou Q. NF-κB Pathway in autoinflammatory diseases: dysregulation of protein modifications by ubiquitin defines a new category of autoinflammatory diseases. Front Immunol. 2017;8:399.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Boisson B, Laplantine E, Prando C, Giliani S, Israelsson E, Xu Z, et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol. 2012;13(12):1178.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sancho-Shimizu V, de Diego RP, Lorenzo L, Halwani R, Alangari A, Israelsson E, et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest. 2011;121(12):4889–902.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Herman M, Ciancanelli M, Ou Y-H, Lorenzo L, Klaudel-Dreszler M, Pauwels E, et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med. 2012;209(9):1567–82.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Andersen LL, Mørk N, Reinert LS, Kofod-Olsen E, Narita R, Jørgensen SE, et al. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J Exp Med. 2015;212(9):1371–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Casrouge A, Zhang S-Y, Eidenschenk C, Jouanguy E, Puel A, Yang K, et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science. 2006;314(5797):308–12.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Al-Muhsen S, Casanova J-L. The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases. J Allergy Clin Immunol. 2008;122(6):1043–51.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Galal N, Boutros J, Marsafy A, Kong XF, Feinberg J, Casanova JL, et al. Mendelian susceptibility to mycobacterial disease in Egyptian children. Mediterr J Hematol Infect Dis. 2012;4(1):e2012033.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fieschi C, Bosticardo M, De Beaucoudrey L, Boisson-Dupuis S, Feinberg J, Santos OF, et al. A novel form of complete IL-12/IL-23 receptor β1 deficiency with cell surface-expressed nonfunctional receptors. Blood. 2004;104(7):2095–101.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bustamante J, Picard C, Boisson-Dupuis S, Abel L, Casanova JL. Genetic lessons learned from X-linked Mendelian susceptibility to mycobacterial diseases. Ann N Y Acad Sci. 2011;1246(1):92–101.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lee W-I, Huang J-L, Yeh K-W, Jaing T-H, Lin T-Y, Huang Y-C, et al. Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs). J Formos Med Assoc. 2011;110(12):750–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Rocca S, Schiavoni G, Sali M, Anfossi AG, Abalsamo L, Palucci I, et al. Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis. PLoS One. 2013;8(5):e62751.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science. 2012;337(6102):1684–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Boisson-Dupuis S, Kong X-F, Okada S, Cypowyj S, Puel A, Abel L, et al. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol. 2012;24(4):364–78.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Moens L, Van Eyck L, Jochmans D, Mitera T, Frans G, Bossuyt X, et al. A novel kindred with inherited STAT2 deficiency and severe viral illness. J Allergy Clin Immunol. 2017;139(6):1995–7.e9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Rezaei N, Hedayat M, Aghamohammadi A, Nichols KE. Primary immunodeficiency diseases associated with increased susceptibility to viral infections and malignancies. J Allergy Clin Immunol. 2011;127(6):1329–41.e2.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kawai T, Malech HL. WHIM syndrome: congenital immune deficiency disease. Curr Opin Hematol. 2009;16(1):20.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Przybyszewska J, Zlotogorski A, Ramot Y. Re-evaluation of epidermodysplasia verruciformis: reconciling more than 90 years of debate. J Am Acad Dermatol. 2017;76(6):1161–75.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lorè NI, Cigana C, Riva C, De Fino I, Nonis A, Spagnuolo L, et al. IL-17A impairs host tolerance during airway chronic infection by Pseudomonas aeruginosa. Sci Rep. 2016;6:25937.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity. 2011;34(2):149–62.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA, et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med. 2008;14(3):275.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Boisson B, Wang C, Pedergnana V, Wu L, Cypowyj S, Rybojad M, et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity. 2013;39(4):676–86.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Swaidani S, Bulek K, Kang Z, Liu C, Lu Y, Yin W, et al. The critical role of epithelial-derived Act1 in IL-17-and IL-25-mediated pulmonary inflammation. J Immunol. 2009;182(3):1631–40.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Claudio E, Sønder SU, Saret S, Carvalho G, Ramalingam TR, Wynn TA, et al. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation. J Immunol. 2009;182(3):1617–30.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Liu L, Okada S, Kong X-F, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635–48.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Engelhardt KR, Grimbacher B. Mendelian traits causing susceptibility to mucocutaneous fungal infections in human subjects. J Allergy Clin Immunol. 2012;129(2):294–305.PubMedCrossRefGoogle Scholar
  37. 37.
    Uzel G, Sampaio EP, Lawrence MG, Hsu AP, Hackett M, Dorsey MJ, et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation–polyendocrinopathy–enteropathy–X-linked–like syndrome. J Allergy Clin Immunol. 2013;131(6):1611–23.e3.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lee PP, Mao H, Yang W, Chan K-W, Ho MH, Lee T-L, et al. Penicillium marneffei infection and impaired IFN-γ immunity in humans with autosomal-dominant gain-of-phosphorylation STAT1 mutations. J Allergy Clin Immunol. 2014;133(3):894–6.e5.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Drummond RA, Lionakis MS. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity. Front Cell Infect Microbiol. 2016;6:39.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lanternier F, Pathan S, Vincent QB, Liu L, Cypowyj S, Prando C, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369(18):1704–14.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gavino C, Cotter A, Lichtenstein D, Lejtenyi D, Fortin C, Legault C, et al. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis. 2014;59(1):81–4.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lanternier F, Barbati E, Meinzer U, Liu L, Pedergnana V, Migaud M, et al. Inherited CARD9 deficiency in 2 unrelated patients with invasive Exophiala infection. J Infect Dis. 2014;211(8):1241–50.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jhingran A, Kasahara S, Shepardson KM, Junecko BAF, Heung LJ, Kumasaka DK, et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLoS Pathog. 2015;11(1):e1004589.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Whibley N, Jaycox JR, Reid D, Garg AV, Taylor JA, Clancy CJ, et al. Delinking CARD9 and IL-17: CARD9 protects against Candida tropicalis infection through a TNF-α–dependent, IL-17–independent mechanism. J Immunol. 2015; Scholar
  45. 45.
    Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298(5597):1395–401.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Popler J, Alimohammadi M, Kämpe O, Dalin F, Dishop MK, Barker JM, et al. Autoimmune polyendocrine syndrome type 1: utility of KCNRG autoantibodies as a marker of active pulmonary disease and successful treatment with rituximab. Pediatr Pulmonol. 2012;47(1):84–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Martinez Lopez MM, Gonzales Casado I, Alvarez Doforno R, et al. AIRE gene mutation in polyglandular syndrome type 1. An Pediatr (Barc). 2006;64(6):583–7.Google Scholar
  48. 48.
    Korniszewski L, Kurzyna M, Stolarski B, Torbicki A, Smerdel A, Ploski R. Fatal primary pulmonary hypertension in a 30-yr-old female with APECED syndrome. Eur Respir J. 2003;22(4):709–11.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Milenkovic T, Zdravkovic D, Djordjevic M, Podkrajsek K, Minic P, Battelino T. A novel AIRE gene mutation in an APS1 patient with adrenal failure, hypoparathyroidism, ovarian failure, growth hormone deficiency, asthma and chronic otitis with effusion (abstract). Horm Res. 2007;68(1):61.Google Scholar
  50. 50.
    Dubois N, Tardivel I, Kajosaari M, Vialettes B, Carel J. Autoimmune bronchiolitis is a life threatening component of autoimmune polyendocrine syndrome type 1 (APS-1). Horm Res. 2007;68(1):61.Google Scholar
  51. 51.
    Tang X, Lasbury ME, Davidson DD, Bartlett MS, Smith JW, Lee C-H. Down-regulation of GATA-2 transcription during Pneumocystis carinii infection. Infect Immun. 2000;68(8):4720–4.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lasbury ME, Tang X, Durant PJ, Lee C-H. Effect of transcription factor GATA-2 on phagocytic activity of alveolar macrophages from Pneumocystis carinii-infected hosts. Infect Immun. 2003;71(9):4943–52.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    González-Lara MF, Wisniowski-Yáñez A, Pérez-Patrigeon S, Hsu AP, Holland SM, Cuellar-Rodríguez JM. Pneumocystis jiroveci pneumonia and GATA2 deficiency: expanding the spectrum of the disease. J Infect. 2017;74(4):425–7.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Marquis J-F, Kapoustina O, Langlais D, Ruddy R, Dufour CR, Kim B-H, et al. Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis. PLoS Genet. 2011;7(6):e1002097.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med. 2011;365(2):127–38.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Jouanguy E, Gineau L, Cottineau J, Béziat V, Vivier E, Casanova J-L. Inborn errors of the development of human natural killer cells. Curr Opin Allergy Clin Immunol. 2013;13(6):589.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Mace EM, Orange JS. Genetic causes of human NK cell deficiency and their effect on NK cell subsets. Front Immunol. 2016;7:545.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Orange JS. Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect. 2002;4(15):1545–58.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Orange JS. Human natural killer cell deficiencies. Curr Opin Allergy Clin Immunol. 2006;6(6):399–409.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med. 1989;320(26):1731–5.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Fleisher G, Starr S, Koven N, Kamiya H, Douglas SD, Henle W. A non-X-linked syndrome with susceptibility to severe Epstein-Barr virus infections. J Pediatr. 1982;100(5):727–30.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Bochman ML, Schwacha A. The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev. 2009;73(4):652–83.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest. 2012;122(3):821–32.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Orange JS. Unraveling human natural killer cell deficiency. J Clin Invest. 2012;122(3):798–801.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Borie R, Danel C, Debray M, Taille C, Dombret M, Aubier M, et al. Pulmonary alveolar proteinosis. Eur Respir Rev. 2011;20(120):98–107.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Browne SK, Holland SM. Immunodeficiency secondary to anti-cytokine autoantibodies. Curr Opin Allergy Clin Immunol. 2010;10(6):534.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Suzuki T, Sakagami T, Young LR, Carey BC, Wood RE, Luisetti M, et al. Hereditary pulmonary alveolar proteinosis: pathogenesis, presentation, diagnosis, and therapy. Am J Respir Crit Care Med. 2010;182(10):1292–304.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Seymour JF, Presneill JJ. Pulmonary alveolar proteinosis: progress in the first 44 years. Am J Respir Crit Care Med. 2002;166(2):215–35.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    McConville M, Ralton J. Developmentally regulated changes in the cell surface architecture of Leishmania parasites. Behring Inst Mitt. 1997;99:34–43.Google Scholar
  70. 70.
    Brittingham A, Morrison CJ, McMaster WR, McGwire BS, Chang K-P, Mosser DM. Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. J Immunol. 1995;155(6):3102–11.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Lincoln LM, Ozaki M, Donelson JE, Beetham JK. Genetic complementation of Leishmania deficient in PSA (GP46) restores their resistance to lysis by complement. Mol Biochem Parasitol. 2004;1(137):185–9.CrossRefGoogle Scholar
  72. 72.
    Zambrano-Villa S, Rosales-Borjas D, Carrero JC, Ortiz-Ortiz L. How protozoan parasites evade the immune response. Trends Parasitol. 2002;18(6):272–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Cestari I, Evans-Osses I, Schlapbach LJ, de Messias-Reason I, Ramirez MI. Mechanisms of complement lectin pathway activation and resistance by trypanosomatid parasites. Mol Immunol. 2013;53(4):328–34.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Chaussabel D, Pajak B, Vercruysse V, Bisseyé C, Garzé V, Habib M, et al. Alteration of migration and maturation of dendritic cells and T-cell depletion in the course of experimental Trypanosoma cruzi infection. Lab Investig. 2003;83(9):1373.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Freitas-Teixeira P, Silveira-Lemos D, Giunchetti R, Baratta-Masini A, Mayrink W, Peruhype-Magalhães V, et al. Distinct pattern of immunophenotypic features of innate and adaptive immunity as a putative signature of clinical and laboratorial status of patients with localized cutaneous leishmaniasis. Scand J Immunol. 2012;76(4):421–32.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Bittencourt AL, de Freitas LAR, de Araujo MOG, Jácomo K. Pneumonitis in congenital Chagas’ disease. Am J Trop Med Hyg. 1981;30(1):38–42.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cesta MF. Normal structure, function, and histology of the spleen. Toxicol Pathol. 2006;34(5):455–65.PubMedCrossRefGoogle Scholar
  78. 78.
    Bisno AL, Freeman JC. The syndrome of asplenia, pneumococcal sepsis, and disseminated intravascular coagulation. Ann Intern Med. 1970;72(3):389–93.PubMedCrossRefGoogle Scholar
  79. 79.
    Ellis EF, Smith RT. The role of the spleen in immunity: with special reference to the post-splenectomy problem in infants. Pediatrics. 1966;37(1):111–9.PubMedGoogle Scholar
  80. 80.
    Freedom RM. The asplenia syndrome: a review of significant extracardiac structural abnormalities in 29 necropsied patients. J Pediatr. 1972;81(6):1130–3.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ivemark B. Implications of agenesis of the spleen on the pathogenesis of conotruncus anomalies in childhood. Acta Paediatr. 1955;44(6):590–2.CrossRefGoogle Scholar
  82. 82.
    Myerson RM, Koelle WA. Congenital absence of the spleen in an adult: report of a case associated with recurrent Waterhouse-Friderichsen syndrome. N Engl J Med. 1956;254(24):1131–2.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Maddux AB, Douglas IS. Is the developmentally immature immune response in paediatric sepsis a recapitulation of immune tolerance? Immunology. 2015;145(1):1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Mahlaoui N, Minard-Colin V, Picard C, Bolze A, Ku C-L, Tournilhac O, et al. Isolated congenital asplenia: a French nationwide retrospective survey of 20 cases. J Pediatr. 2011;158(1):142–8.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    William BM, Corazza GR. Hyposplenism: a comprehensive review. Part I: basic concepts and causes. Hematology. 2007;12(1):1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Mathew H, Dittus C, Malek A, Negroiu A. Howell-Jolly bodies on peripheral smear leading to the diagnosis of congenital hyposplenism in a patient with septic shock. Clin Case Rep. 2015;3(8):714–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Persio Roxo-Junior
    • 1
    Email author
  • Isabela Mina
    • 1
  • Catherine Sonaly Ferreira Martins
    • 1
  1. 1.Division of Immunology and Allergy, Department of PediatricsRibeirão Preto Medical School, University of São PauloSão PauloBrazil

Personalised recommendations