Advertisement

Pulmonary Manifestations of Genetic Disorders of Immune Regulation

  • Sebastian F. N. BodeEmail author
  • Ulrich Baumann
  • Carsten Speckmann
Chapter

Abstract

Genetic disorders of immune regulation can present with both immunodeficiency and autoimmunity/immune dysregulation, and affected patients may show variable pulmonary manifestations. In contrast to antibody deficiencies, immune dysregulation typically leads to noninfectious pulmonary inflammation with nonspecific or no symptoms at all. Genetic disorders of immune regulation comprise of conditions leading to hemophagocytic lymphohistiocytosis, T-/B-cell immunodeficiencies, or combined immunodeficiencies. Especially the latter conditions can present similarly as antibody deficiencies and combined immunodeficiencies due to other molecular defects with pulmonary manifestations due to poor control of infectious agents. Some genetic disorders of immune regulation though show a typical pulmonary phenotype that can aid in the diagnosis of the underlying disease. As many patients may only be mildly affected at onset, pulmonary function tests and appropriate therapy may be delayed. Evidence-based recommendations on the therapeutic management of these respiratory manifestations or complications are not available in many cases; some suggestions are discussed in this chapter.

Keywords

Familial hemophagocytic lymphohistiocytosis Autoimmune lymphoproliferative syndrome Autoimmune lymphoproliferative syndromes with primary immunodeficiency LRBA deficiency Chédiak-Higashi syndrome Griscelli syndrome Type 2 Hermansky-Pudlak syndrome X-linked lymphoproliferative syndromes IPEX syndrome 

References

  1. 1.
    Filipovich AH. Hemophagocytic lymphohistiocytosis (HLH) and related disorders. Hematology Am Soc Hematol Educ Program. 2009:127–31. https://doi.org/10.1182/asheducation-2009.1.127.CrossRefGoogle Scholar
  2. 2.
    Stepp SE, Dufourcq-Lagelouse R, Kumar V. Pillars article: Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999. 286: 1957–1959. J Immunol. 2015;194(11):5044–6.PubMedGoogle Scholar
  3. 3.
    Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew PA, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286(5446):1957–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Feldmann J, Callebaut I, Raposo G, Certain S, Bacq D, Dumont C, et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell. 2003;115(4):461–73.PubMedCrossRefGoogle Scholar
  5. 5.
    zur Stadt U, Schmidt S, Kasper B, Beutel K, Diler AS, Henter JI, et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet. 2005;14(6):827–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Cote M, Menager MM, Burgess A, Mahlaoui N, Picard C, Schaffner C, et al. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest. 2009;119(12):3765–73.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    zur Stadt U, Rohr J, Seifert W, Koch F, Grieve S, Pagel J, et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet. 2009;85(4):482–92.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ohadi M, Lalloz MR, Sham P, Zhao J, Dearlove AM, Shiach C, et al. Localization of a gene for familial hemophagocytic lymphohistiocytosis at chromosome 9q21.3-22 by homozygosity mapping. Am J Hum Genet. 1999;64(1):165–71.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bode SF, Lehmberg K, Maul-Pavicic A, Vraetz T, Janka G, Stadt UZ, et al. Recent advances in the diagnosis and treatment of hemophagocytic lymphohistiocytosis. Arthritis Res Ther. 2012;14(3):213.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Henter JI, Horne A, Arico M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124–31.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Seguin A, Galicier L, Boutboul D, Lemiale V, Azoulay E. Pulmonary involvement in patients with Hemophagocytic Lymphohistiocytosis. Chest. 2016;149(5):1294–301.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Ramachandran B, Balasubramanian S, Abhishek N, Ravikumar KG, Ramanan AV. Profile of hemophagocytic lymphohistiocytosis in children in a tertiary care hospital in India. Indian Pediatr. 2011;48(1):31–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Fitzgerald NE, MacClain KL. Imaging characteristics of hemophagocytic lymphohistiocytosis. Pediatr Radiol. 2003;33(6):392–401.PubMedCrossRefGoogle Scholar
  14. 14.
    Jin YK, Xie ZD, Yang S, Lu G, Shen KL. Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis: a retrospective study of 78 pediatric cases in mainland of China. Chin Med J (Engl). 2010;123(11):1426–30.Google Scholar
  15. 15.
    Rohr J, Beutel K, Maul-Pavicic A, Vraetz T, Thiel J, Warnatz K, et al. Atypical familial hemophagocytic lymphohistiocytosis due to mutations in UNC13D and STXBP2 overlaps with primary immunodeficiency diseases. Haematologica. 2010;95(12):2080–7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ost A, Nilsson-Ardnor S, Henter JI. Autopsy findings in 27 children with haemophagocytic lymphohistiocytosis. Histopathology. 1998;32(4):310–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Yoshida N, Ishii E, Oshima K, Yanai F, Ogawa A, Kataoka S, et al. Engraftment and dissemination of T lymphocytes from primary haemophagocytic lymphohistiocytosis in scid mice. Br J Haematol. 2003;121(2):349–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Sato K, Misawa N, Nie C, Satou Y, Iwakiri D, Matsuoka M, et al. A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood. 2011;117(21):5663–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Ouachee-Chardin M, Elie C, de Saint Basile G, Le Deist F, Mahlaoui N, Picard C, et al. Hematopoietic stem cell transplantation in hemophagocytic lymphohistiocytosis: a single-center report of 48 patients. Pediatrics. 2006;117(4):e743–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Bidere N, Su HC, Lenardo MJ. Genetic disorders of programmed cell death in the immune system. Annu Rev Immunol. 2006;24:321–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH international workshop. Blood. 2010;116(14):e35–40.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bleesing JJ, Brown MR, Straus SE, Dale JK, Siegel RM, Johnson M, et al. Immunophenotypic profiles in families with autoimmune lymphoproliferative syndrome. Blood. 2001;98(8):2466–73.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lopatin U, Yao X, Williams RK, Bleesing JJ, Dale JK, Wong D, et al. Increases in circulating and lymphoid tissue interleukin-10 in autoimmune lymphoproliferative syndrome are associated with disease expression. Blood. 2001;97(10):3161–70.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Fuss IJ, Strober W, Dale JK, Fritz S, Pearlstein GR, Puck JM, et al. Characteristic T helper 2 T cell cytokine abnormalities in autoimmune lymphoproliferative syndrome, a syndrome marked by defective apoptosis and humoral autoimmunity. J Immunol. 1997;158(4):1912–8.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Volkl S, Rensing-Ehl A, Allgauer A, Schreiner E, Lorenz MR, Rohr J, et al. Hyperactive mTOR pathway promotes lymphoproliferation and abnormal differentiation in autoimmune lymphoproliferative syndrome. Blood. 2016;128(2):227–38.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Price S, Shaw PA, Seitz A, Joshi G, Davis J, Niemela JE, et al. Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood. 2014;123(13):1989–99.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lau CY, Mihalek AD, Wang J, Dodd LE, Perkins K, Price S, et al. Pulmonary manifestations of the autoimmune lymphoproliferative syndrome. a retrospective study of a unique patient cohort. Ann Am Thorac Soc. 2016;13(8):1279–88.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Teachey DT. New advances in the diagnosis and treatment of autoimmune lymphoproliferative syndrome. Curr Opin Pediatr. 2012;24(1):1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Niemela J, Kuehn HS, Kelly C, Zhang M, Davies J, Melendez J, et al. Caspase-8 deficiency presenting as late-onset multi-organ lymphocytic infiltration with granulomas in two adult siblings. J Clin Immunol. 2015;35(4):348–55.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature. 2002;419(6905):395–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Bolze A, Byun M, McDonald D, Morgan NV, Abhyankar A, Premkumar L, et al. Whole-exome-sequencing-based discovery of human FADD deficiency. Am J Hum Genet. 2010;87(6):873–81.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Niemela JE, Lu L, Fleisher TA, Davis J, Caminha I, Natter M, et al. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood. 2011;117(10):2883–6.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Oliveira JB, Bidere N, Niemela JE, Zheng L, Sakai K, Nix CP, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 2007;104(21):8953–8.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635–48.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dotta L, Scomodon O, Padoan R, Timpano S, Plebani A, Soresina A, et al. Clinical and immunological data of nine patients with chronic mucocutaneous candidiasis disease. Data Brief. 2016;7:311–5.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Toubiana J, Okada S, Hiller J, Oleastro M, Lagos Gomez M, Aldave Becerra JC, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127(25):3154–64.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Puel A, Cypowyj S, Marodi L, Abel L, Picard C, Casanova JL. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol. 2012;12(6):616–22.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Leiding JW, Okada S, Hagin D, Abinun M, Shcherbina A, Balashov DN, et al. Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. J Allergy Clin Immunol. 2018;141(2):704–717.e5. https://doi.org/10.1016/j.jaci.2017.03.049. Epub 2017 Jun 7.PubMedCrossRefGoogle Scholar
  39. 39.
    Consonni F, Dotta L, Todaro F, Vairo D, Badolato R. Signal transducer and activator of transcription gain-of-function primary immunodeficiency/immunodysregulation disorders. Curr Opin Pediatr. 2017;29(6):711–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Weinacht KG, Charbonnier LM, Alroqi F, Plant A, Qiao Q, Wu H, et al. Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J Allergy Clin Immunol. 2017;139(5):1629–40 e2.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Notarangelo LD, Fleisher TA. Targeted strategies directed at the molecular defect: toward precision medicine for select primary immunodeficiency disorders. J Allergy Clin Immunol. 2017;139(3):715–23.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Milner JD, Vogel TP, Forbes L, Ma CA, Stray-Pedersen A, Niemela JE, et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood. 2015;125(4):591–9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Forbes LR, Milner J, Haddad E. Signal transducer and activator of transcription 3: a year in review. Curr Opin Hematol. 2016;23(1):23–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014;1845(2):136–54.PubMedGoogle Scholar
  45. 45.
    Lucas CL, Chandra A, Nejentsev S, Condliffe AM, Okkenhaug K. PI3Kdelta and primary immunodeficiencies. Nat Rev Immunol. 2016;16(11):702–14.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhang KJ, Husami A, Marsh R, Jordan MB. Identification of a phosphoinositide 3-kinase (PI-3K) p110δ (PIK3CD) deficient individual. J Clin Immunol. 2013;33:673–4.Google Scholar
  47. 47.
    Conley ME, Dobbs AK, Quintana AM, Bosompem A, Wang YD, Coustan-Smith E, et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85alpha subunit of PI3K. J Exp Med. 2012;209(3):463–70.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase delta syndrome: a large patient cohort study. J Allergy Clin Immunol. 2017;139(2):597–606 e4.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Angulo I, Vadas O, Garcon F, Banham-Hall E, Plagnol V, Leahy TR, et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science. 2013;342(6160):866–71.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol. 2014;15(1):88–97.PubMedCrossRefGoogle Scholar
  51. 51.
    Lucas CL, Zhang Y, Venida A, Wang Y, Hughes J, McElwee J, et al. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J Exp Med. 2014;211(13):2537–47.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Deau MC, Heurtier L, Frange P, Suarez F, Bole-Feysot C, Nitschke P, et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest. 2015;125(4):1764–5.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Elkaim E, Neven B, Bruneau J, Mitsui-Sekinaka K, Stanislas A, Heurtier L, et al. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase delta syndrome 2: a cohort study. J Allergy Clin Immunol. 2016;138(1):210–8 e9.PubMedCrossRefGoogle Scholar
  54. 54.
    Rao VK, Webster S, Dalm V, Sediva A, van Hagen PM, Holland S, et al. Effective “activated PI3K delta syndrome”-targeted therapy with the PI3K delta inhibitor leniolisib. Blood. 2017;130(21):2307–16.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20(12):1410–6.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345(6204):1623–7.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Verma N, Burns SO, Walker LSK, Sansom DM. Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations. Clin Exp Immunol. 2017;190(1):1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lee S, Moon JS, Lee CR, Kim HE, Baek SM, Hwang S, et al. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. J Allergy Clin Immunol. 2016;137(1):327–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Shields CL, Say EA, Mashayekhi A, Garg SJ, Dunn JP, Shields JA. Assessment of CTLA-4 deficiency-related autoimmune choroidopathy response to abatacept. JAMA Ophthalmol. 2016;134(7):844–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Slatter MA, Engelhardt KR, Burroughs LM, Arkwright PD, Nademi Z, Skoda-Smith S, et al. Hematopoietic stem cell transplantation for CTLA4 deficiency. J Allergy Clin Immunol. 2016;138(2):615–9 e1.PubMedCrossRefGoogle Scholar
  61. 61.
    Lopez-Herrera G, Tampella G, Pan-Hammarstrom Q, Herholz P, Trujillo-Vargas CM, Phadwal K, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet. 2012;90(6):986–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gamez-Diaz L, August D, Stepensky P, Revel-Vilk S, Seidel MG, Noriko M, et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol. 2016;137(1):223–30.PubMedCrossRefGoogle Scholar
  63. 63.
    Azizi G, Abolhassani H, Mahdaviani SA, Chavoshzadeh Z, Eshghi P, Yazdani R, et al. Clinical, immunologic, molecular analyses and outcomes of Iranian patients with LRBA deficiency: a longitudinal study. Pediatr Allergy Immunol. 2017;28(5):478–84.PubMedCrossRefGoogle Scholar
  64. 64.
    Panchabhai TS, Farver C, Highland KB. Lymphocytic interstitial pneumonia. Clin Chest Med. 2016;37(3):463–74.PubMedCrossRefGoogle Scholar
  65. 65.
    Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349(6246):436–40.PubMedCrossRefGoogle Scholar
  66. 66.
    Kaplan J, De Domenico I, Ward DM. Chediak-Higashi syndrome. Curr Opin Hematol. 2008;15(1):22–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Eapen M, DeLaat CA, Baker KS, Cairo MS, Cowan MJ, Kurtzberg J, et al. Hematopoietic cell transplantation for Chediak-Higashi syndrome. Bone Marrow Transplant. 2007;39(7):411–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Tang X, Yamanaka S, Miyagi Y, Nagashima Y, Nakatani Y. Lung pathology of pale ear mouse (model of Hermansky-Pudlak syndrome 1) and beige mouse (model of Chediak-Higashi syndrome): severity of giant lamellar body degeneration of type II pneumocytes correlates with interstitial inflammation. Pathol Int. 2005;55(3):137–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Pachlopnik Schmid J, Moshous D, Boddaert N, Neven B, Dal Cortivo L, Tardieu M, et al. Hematopoietic stem cell transplantation in Griscelli syndrome type 2: a single-center report on 10 patients. Blood. 2009;114(1):211–8.PubMedGoogle Scholar
  70. 70.
    Szczawinska-Poplonyk A, Kycler Z, Breborowicz A, Klaudel-Dreszler M, Pac M, Zegadlo-Mylik M, et al. Pulmonary lymphomatoid granulomatosis in Griscelli syndrome type 2. Viral Immunol. 2011;24(6):471–3.PubMedCrossRefGoogle Scholar
  71. 71.
    Gochuico BR, Huizing M, Golas GA, Scher CD, Tsokos M, Denver SD, et al. Interstitial lung disease and pulmonary fibrosis in Hermansky-Pudlak syndrome type 2, an adaptor protein-3 complex disease. Mol Med. 2012;18:56–64.PubMedCrossRefGoogle Scholar
  72. 72.
    White DA, Smith GJ, Cooper JA Jr, Glickstein M, Rankin JA. Hermansky-pudlak syndrome and interstitial lung disease: report of a case with lavage findings. Am Rev Respir Dis. 1984;130(1):138–41.PubMedGoogle Scholar
  73. 73.
    Brantly M, Avila NA, Shotelersuk V, Lucero C, Huizing M, Gahl WA. Pulmonary function and high-resolution CT findings in patients with an inherited form of pulmonary fibrosis, Hermansky-Pudlak syndrome, due to mutations in HPS-1. Chest. 2000;117(1):129–36.PubMedCrossRefGoogle Scholar
  74. 74.
    Gahl WA, Brantly M, Kaiser-Kupfer MI, Iwata F, Hazelwood S, Shotelersuk V, et al. Genetic defects and clinical characteristics of patients with a form of oculocutaneous albinism (Hermansky-Pudlak syndrome). N Engl J Med. 1998;338(18):1258–64.PubMedCrossRefGoogle Scholar
  75. 75.
    Gahl WA, Brantly M, Troendle J, Avila NA, Padua A, Montalvo C, et al. Effect of pirfenidone on the pulmonary fibrosis of Hermansky-Pudlak syndrome. Mol Genet Metab. 2002;76(3):234–42.PubMedCrossRefGoogle Scholar
  76. 76.
    Lyerla TA, Rusiniak ME, Borchers M, Jahreis G, Tan J, Ohtake P, et al. Aberrant lung structure, composition, and function in a murine model of Hermansky-Pudlak syndrome. Am J Physiol Lung Cell Mol Physiol. 2003;285(3):L643–53.PubMedCrossRefGoogle Scholar
  77. 77.
    Wang L, Lyerla T. Histochemical and cellular changes accompanying the appearance of lung fibrosis in an experimental mouse model for Hermansky Pudlak syndrome. Histochem Cell Biol. 2010;134(2):205–13.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Guttentag SH, Akhtar A, Tao JQ, Atochina E, Rusiniak ME, Swank RT, et al. Defective surfactant secretion in a mouse model of Hermansky-Pudlak syndrome. Am J Respir Cell Mol Biol. 2005;33(1):14–21.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mahavadi P, Korfei M, Henneke I, Liebisch G, Schmitz G, Gochuico BR, et al. Epithelial stress and apoptosis underlie Hermansky-Pudlak syndrome-associated interstitial pneumonia. Am J Respir Crit Care Med. 2010;182(2):207–19.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Badolato R, Prandini A, Caracciolo S, Colombo F, Tabellini G, Giacomelli M, et al. Exome sequencing reveals a pallidin mutation in a Hermansky-Pudlak-like primary immunodeficiency syndrome. Blood. 2012;119(13):3185–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Cullinane AR, Curry JA, Carmona-Rivera C, Summers CG, Ciccone C, Cardillo ND, et al. A BLOC-1 mutation screen reveals that PLDN is mutated in Hermansky-Pudlak syndrome type 9. Am J Hum Genet. 2011;88(6):778–87.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ammann S, Schulz A, Krageloh-Mann I, Dieckmann NM, Niethammer K, Fuchs S, et al. Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood. 2016;127(8):997–1006.PubMedCrossRefGoogle Scholar
  83. 83.
    Jessen B, Bode SF, Ammann S, Chakravorty S, Davies G, Diestelhorst J, et al. The risk of hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type 2. Blood. 2013;121(15):2943–51.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    del Campo M, Hall BD, Aeby A, Nassogne MC, Verloes A, Roche C, et al. Albinism and agenesis of the corpus callosum with profound developmental delay: Vici syndrome, evidence for autosomal recessive inheritance. Am J Med Genet. 1999;85(5):479–85.PubMedCrossRefGoogle Scholar
  85. 85.
    Finocchi A, Angelino G, Cantarutti N, Corbari M, Bevivino E, Cascioli S, et al. Immunodeficiency in Vici syndrome: a heterogeneous phenotype. Am J Med Genet A. 2012;158A(2):434–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Bohn G, Allroth A, Brandes G, Thiel J, Glocker E, Schaffer AA, et al. A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med. 2007;13(1):38–45.PubMedCrossRefGoogle Scholar
  87. 87.
    Pachlopnik Schmid J, Canioni D, Moshous D, Touzot F, Mahlaoui N, Hauck F, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood. 2011;117(5):1522–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Speckmann C, Lehmberg K, Albert MH, Damgaard RB, Fritsch M, Gyrd-Hansen M, et al. X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. Clin Immunol. 2013;149(1):133–41.PubMedCrossRefGoogle Scholar
  89. 89.
    Marsh RA, Madden L, Kitchen BJ, Mody R, McClimon B, Jordan MB, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. 2010;116(7):1079–82.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Steele CL, Dore M, Ammann S, Loughrey M, Montero A, Burns SO, et al. X-linked inhibitor of apoptosis complicated by granulomatous lymphocytic interstitial lung disease (GLILD) and granulomatous hepatitis. J Clin Immunol. 2016;36(7):733–8.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H, et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011;117(1):53–62.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Marsh RA, Rao K, Satwani P, Lehmberg K, Muller I, Li D, et al. Allogeneic hematopoietic cell transplantation for XIAP deficiency: an international survey reveals poor outcomes. Blood. 2013;121(6):877–83.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13(3):255–62.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature. 2011;475(7357):471–6.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Stepensky P, Weintraub M, Yanir A, Revel-Vilk S, Krux F, Huck K, et al. IL-2-inducible T-cell kinase deficiency: clinical presentation and therapeutic approach. Haematologica. 2011;96(3):472–6.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Huck K, Feyen O, Niehues T, Ruschendorf F, Hubner N, Laws HJ, et al. Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest. 2009;119(5):1350–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Mansouri D, Mahdaviani SA, Khalilzadeh S, Mohajerani SA, Hasanzad M, Sadr S, et al. IL-2-inducible T-cell kinase deficiency with pulmonary manifestations due to disseminated Epstein-Barr virus infection. Int Arch Allergy Immunol. 2012;158(4):418–22.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Salzer E, Daschkey S, Choo S, Gombert M, Santos-Valente E, Ginzel S, et al. Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica. 2013;98(3):473–8.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Alkhairy OK, Perez-Becker R, Driessen GJ, Abolhassani H, van Montfrans J, Borte S, et al. Novel mutations in TNFRSF7/CD27: clinical, immunologic, and genetic characterization of human CD27 deficiency. J Allergy Clin Immunol. 2015;136(3):703–12 e10.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    van Montfrans JM, Hoepelman AI, Otto S, van Gijn M, van de Corput L, de Weger RA, et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol. 2012;129(3):787–93 e6.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Abolhassani H, Edwards ES, Ikinciogullari A, Jing H, Borte S, Buggert M, et al. Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency. J Exp Med. 2017;214(1):91–106.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Barzaghi F, Amaya Hernandez LC, Neven B, Ricci S, Kucuk ZY, Bleesing J, et al. Long-term follow up of IPEX syndrome patients after different therapeutic strategies: an international multicenter retrospective study. J Allergy Clin Immunol. 2018;141(3):1036–1049.e5. https://doi.org/10.1016/j.jaci.2017.10.041. Epub 2017 Dec 11.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 2012;3:211.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Curotto de Lafaille MA, Kutchukhidze N, Shen S, Ding Y, Yee H, Lafaille JJ. Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity. 2008;29(1):114–26.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Gambineri E, Perroni L, Passerini L, Bianchi L, Doglioni C, Meschi F, et al. Clinical and molecular profile of a new series of patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: inconsistent correlation between forkhead box protein 3 expression and disease severity. J Allergy Clin Immunol. 2008;122(6):1105–12 e1.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Goudy K, Aydin D, Barzaghi F, Gambineri E, Vignoli M, Ciullini Mannurita S, et al. Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clin Immunol. 2013;146(3):248–61.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 2007;119(2):482–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Bezrodnik L, Caldirola MS, Seminario AG, Moreira I, Gaillard MI. Follicular bronchiolitis as phenotype associated with CD25 deficiency. Clin Exp Immunol. 2014;175(2):227–34.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, et al. Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med. 2003;349(12):1139–47.PubMedCrossRefGoogle Scholar
  110. 110.
    Nadeau K, Hwa V, Rosenfeld RG. STAT5b deficiency: an unsuspected cause of growth failure, immunodeficiency, and severe pulmonary disease. J Pediatr. 2011;158(5):701–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Zeiser R, Leveson-Gower DB, Zambricki EA, Kambham N, Beilhack A, Loh J, et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood. 2008;111(1):453–62.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Lohr NJ, Molleston JP, Strauss KA, Torres-Martinez W, Sherman EA, Squires RH, et al. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease. Am J Hum Genet. 2010;86(3):447–53.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Watkin LB, Jessen B, Wiszniewski W, Vece TJ, Jan M, Sha Y, et al. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat Genet. 2015;47(6):654–60.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Strange C, Highland KB. Interstitial lung disease in the patient who has connective tissue disease. Clin Chest Med. 2004;25(3):549–59, vii.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sebastian F. N. Bode
    • 1
    Email author
  • Ulrich Baumann
    • 2
  • Carsten Speckmann
    • 3
  1. 1.Center for Pediatrics, Department of General Pediatrics, Adolescent Medicine, and NeonatologyMedical Center, Faculty of Medicine, University of FreiburgFreiburgGermany
  2. 2.Department of Paediatric Pulmonology and NeonatalogyHanover Medical SchoolHannoverGermany
  3. 3.Center for Chronic Immunodeficiency and Center for Pediatrics, Department of Pediatric Hematology and OncologyMedical Center, Faculty of Medicine, University of FreiburgFreiburgGermany

Personalised recommendations