Pulmonary Manifestations of Predominantly Antibody Deficiencies

  • Amene Saghazadeh
  • Nima RezaeiEmail author


Predominantly antibody deficiencies (PADs) are the most frequent forms of primary immunodeficiency diseases (PIDs). Commonly accompanied with complications involving several body systems, immunoglobulin substitution therapy along with prophylactic antibiotics remained the cornerstone of treatment for PADs and related complications. Patients with respiratory complications should be prescribed an appropriate therapy as soon as possible and have to be adhering to more and longer medical therapies. Recent studies identified a gap for screening protocols to monitor respiratory manifestations in patients with PADs. In the present chapter, the pulmonary manifestations of different PADs for each have been discussed. The chapter is mainly focused on X-linked agammaglobulinemia, common variable immunodeficiency, activated PI3K-δ syndrome, LRBA deficiency, CD19 complex deficiencies, CD20 deficiency, other monogenic defects associated with hypogammaglobulinemia, immunoglobulin class switch recombination deficiencies affecting B-cells, transient hypogammaglobulinemia of infancy, and selective IgA deficiency.


Bruton-type agammaglobulinemia Agammaglobulinemia Non-Bruton type Activated PI3K-delta syndrome Common variable immunodeficiency Turcot syndrome 


  1. 1.
    Fried AJ, Bonilla FA. Pathogenesis, diagnosis, and management of primary antibody deficiencies and infections. Clin Microbiol Rev. 2009;22(3):396–414.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Maarschalk-Ellerbroek LJ, Hoepelman IM, Ellerbroek PM. Immunoglobulin treatment in primary antibody deficiency. Int J Antimicrob Agents. 2011;37(5):396–404.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Shillitoe B, Gennery A. X-linked agammaglobulinaemia: outcomes in the modern era. Clin Immunol (Orlando, Fla). 2017;183:54–62.CrossRefGoogle Scholar
  4. 4.
    Jolles S, Sanchez-Ramon S, Quinti I, Soler-Palacin P, Agostini C, Florkin B, et al. Screening protocols to monitor respiratory status in primary immunodeficiency disease: findings from a European survey and subclinical infection working group. Clin Exp Immunol. 2017;190(2):226–34.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hendriks RW, Bredius RGM, Pike-Overzet K, Staal FJT. Biology and novel treatment options for XLA, the most common monogenetic immunodeficiency in man. Expert Opin Ther Targets. 2011;15(8):1003–21.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Justiz Vaillant AA, Qurie A. Immunodeficiency. StatPearls. Treasure Island: StatPearls Publishing LLC; 2018.Google Scholar
  7. 7.
    Morales-Aza B, Glennie SJ, Garcez TP, Davenport V, Johnston SL, Williams NA, et al. Impaired maintenance of naturally acquired T-cell memory to the meningococcus in patients with B-cell immunodeficiency. Blood. 2009;113(18):4206–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Smith CIE, Berglof A. X-Linked Agammaglobulinemia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. GeneReviews((R)). Seattle: University of Washington, Seattle; 1993. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.Google Scholar
  9. 9.
    Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine. 2006;85(4):193–202.PubMedCrossRefGoogle Scholar
  10. 10.
    Moin M, Aghamohammadi A, Farhoudi A, Pourpak Z, Rezaei N, Movahedi M, et al. X-linked agammaglobulinemia: a survey of 33 Iranian patients. Immunol Investig. 2004;33(1):81–93.CrossRefGoogle Scholar
  11. 11.
    Buckley RH. Pulmonary complications of primary immunodeficiencies. Paediatr Respir Rev. 2004;5:S225–S33.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Ishida F, Kobayashi H, Saito H, Futatani T, Miyawaki T, Kiyosawa K. The oldest case with X-linked agammaglobulinemia in Japan lacking Bruton-type tyrosine kinase protein detected by flow cytometry. [Rinsho ketsueki]. Jpn J Clin Hematol. 1998;39(1):44–7.Google Scholar
  13. 13.
    Sweinberg SK, Wodell RA, Grodofsky MP, Greene JM, Conley ME. Retrospective analysis of the incidence of pulmonary disease in hypogammaglobulinemia. J Allergy Clin Immunol. 1991;88(1):96–104.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Quinti I, Soresina A, Guerra A, Rondelli R, Spadaro G, Agostini C, et al. Effectiveness of immunoglobulin replacement therapy on clinical outcome in patients with primary antibody deficiencies: results from a multicenter prospective cohort study. J Clin Immunol. 2011;31(3):315–22.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Chen Y, Stirling RG, Paul E, Hore-Lacy F, Thompson BR, Douglass JA. Longitudinal decline in lung function in patients with primary immunoglobulin deficiencies. J Allergy Clin Immunol. 2011;127(6):1414.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Basile N, Danielian S, Oleastro M, Rosenzweig S, Prieto E, Rossi J, et al. Clinical and molecular analysis of 49 patients with X-linked agammaglobulinemia from a single center in Argentina. J Clin Immunol. 2009;29(1):123–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    He JX, Zhao SY, Jiang ZF. Clinical features of 17 cases of X-linked agammaglobulinemia. Zhongguo dang dai er ke za zhi= Chinese Journal of Contemporary Pediatrics. 2008;10(2):139–42.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002;104(3):221–30.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Rip J, Van Der Ploeg EK, Hendriks RW, Corneth OBJ. The role of Bruton’s tyrosine kinase in immune cell signaling and systemic autoimmunity. Crit Rev Immunol. 2018;38(1):17–62.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer. 2018;17(1):57.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Bao Y, Zheng J, Han C, Jin J, Han H, Liu Y, et al. Tyrosine kinase Btk is required for NK cell activation. J Biol Chem. 2012;287:23769–78. Scholar
  22. 22.
    Ochs HD, Davis SD, Wedgwood RJ. Immunologic responses to bacteriophage ϕX 174 in immunodeficiency diseases. J Clin Invest. 1971;50(12):2559–68.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hendriks RW, Yuvaraj S, Kil LP. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer. 2014;14(4):219–32.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Burger JA, Wiestner A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer. 2018;18(3):148–67.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lee J, Rhee M, Min TK, Bang HI, Jang MA, Kang ES, et al. A novel BTK gene mutation, c.82delC (p.Arg28 Alafs(*)5), in a Korean family with X-linked agammaglobulinemia. Korean J Pediatr. 2016;59(Suppl 1):S49–s52.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Xu Y, Qing Q, Liu X, Chen S, Chen Z, Niu X, et al. Bruton’s agammaglobulinemia in an adult male due to a novel mutation: a case report. J Thorac Dis. 2016;8(10):E1207–e12.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wang S, Lu Y, Li H, Wang Z, Mo X, Chai Z, et al. A novel deletion mutation and structural abnormality in the Bruton’s tyrosine kinase gene identified in a Chinese patient with X-linked agammaglobulinemia. Clin Lab. 2014;60(5):859–62.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Graziani S, Di Matteo G, Benini L, Di Cesare S, Chiriaco M, Chini L, et al. Identification of a Btk mutation in a dysgammaglobulinemic patient with reduced B cells: XLA diagnosis or not? Clin Immunol. 2008;128(3):322–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Aghamohammadi A, Fiorini M, Moin M, Parvaneh N, Teimourian S, Yeganeh M, et al. Clinical, immunological and molecular characteristics of 37 Iranian patients with X-linked agammaglobulinemia. Int Arch Allergy Immunol. 2006;141(4):408–14.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Jansen AG, Noordzij JG, Bröcker-Vriends AH, Bredius RG. Widely divergent clinical phenotype of X-linked agammaglobulinemia in two cousins. Ned Tijdschr Geneeskd. 2004;148(21):1053–6.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Abolhassani H, Vitali M, Lougaris V, Giliani S, Parvaneh N, Parvaneh L, et al. Cohort of Iranian patients with congenital agammaglobulinemia: mutation analysis and novel gene defects. Expert Rev Clin Immunol. 2016;12(4):479–86.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Lederman HM, Winkelstein JA. X-linked agammaglobulinemia: an analysis of 96 patients. Medicine. 1985;64(3):145–56.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Stubbs A, Bangs C, Shillitoe B, Edgar JD, Burns SO, Thomas M, et al. Bronchiectasis and deteriorating lung function in agammaglobulinaemia despite immunoglobulin replacement therapy. Clin Exp Immunol. 2018;191(2):212–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Quezada A, Norambuena X, Bravo A, Castro-Rodriguez JA. Recurrent pneumonia as warning manifestation for suspecting primary immunodeficiencies in children. J Investig Allergol Clin Immunol. 2001;11(4):295–9.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Usui K, Sasahara Y, Tazawa R, Hagiwara K, Tsukada S, Miyawaki T, et al. Recurrent pneumonia with mild hypogammaglobulinemia diagnosed as X-linked agammaglobulinemia in adults. Respir Res. 2001;2(3):188.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Schussler E, Beasley MB, Maglione PJ. Lung disease in primary antibody deficiencies. J Allergy Clin Immunol Pract. 2016;4(6):1039–52.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Quartier P, Debré M, De Blic J, de Sauverzac R, Sayegh N, Jabado N, et al. Early and prolonged intravenous immunoglobulin replacement therapy in childhood agammaglobulinemia: a retrospective survey of 31 patients. J Pediatr. 1999;134(5):589–96.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Bryan BA, Battersby A, Shillitoe BM, Barge D, Bourne H, Flood T, et al. Respiratory health and related quality of life in patients with congenital agammaglobulinemia in the northern region of the UK. J Clin Immunol. 2016;36(5):472–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kainulainen L, Nikoskelainen J, Vuorinen T, Tevola K, Liippo K, Ruuskanen O. Viruses and bacteria in bronchial samples from patients with primary hypogammaglobulinemia. Am J Respir Crit Care Med. 1999;159(4):1199–204.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Nishi K, Kawai T, Kubota M, Ishiguro A, Onodera M. X-linked agammaglobulinemia complicated with pulmonary aspergillosis. Pediatr Int Off J Jpn Pediatr Soc. 2018;60(1):90–2.CrossRefGoogle Scholar
  41. 41.
    Kawakami C, Inoue A, Takitani K, Kanegane H, Miyawaki T, Tamai H. X-linked agammaglobulinemia complicated with endobronchial tuberculosis. Acta Paediatr. 2011;100(3):466–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Dogru D, Kiper N, Ozcelik U, Yalcin E, Tezcan I. Tuberculosis in children with congenital immunodeficiency syndromes. Tuberkuloz ve toraks. 2010;58(1):59–63.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Alibrahim A, Lepore M, Lierl M, Filipovich A, Assa’ad A. Pneumocystis carinii pneumonia in an infant with X-linked agammaglobulinemia. J Allergy Clin Immunol. 1998;101(4):552–3.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Howard V, Greene JM, Pahwa S, Winkelstein JA, Boyle JM, Kocak M, et al. The health status and quality of life of adults with X-linked agammaglobulinemia. Clin Immunol. 2006;118(2–3):201–8.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Slade CA, Bosco JJ, Binh Giang T, Kruse E, Stirling RG, Cameron PU, et al. Delayed diagnosis and complications of predominantly antibody deficiencies in a cohort of Australian adults. Front Immunol. 2018;9:694.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kainulainen L, Varpula M, Liippo K, Svedström E, Nikoskelainen J, Ruuskanen O. Pulmonary abnormalities in patients with primary hypogammaglobulinemia. J Allergy Clin Immunol. 1999;104(5):1031–6.CrossRefGoogle Scholar
  47. 47.
    Funato M, Kaneko H, Ohkusu K, Sasai H, Kubota K, Ohnishi H, et al. Refractory chronic pleurisy caused by helicobacter equorum-like bacterium in a patient with X-linked agammaglobulinemia. J Clin Microbiol. 2011;49(9):3432–5.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Krupa A, Fol M, Rahman M, Stokes KY, Florence JM, Leskov IL, et al. Silencing Bruton’s tyrosine kinase in alveolar neutrophils protects mice from LPS/immune complex-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2014;307(6):L435–48.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Krupa A, Fudala R, Florence JM, Tucker T, Allen TC, Standiford TJ, et al. Bruton’s tyrosine kinase mediates FcgammaRIIa/toll-like receptor-4 receptor crosstalk in human neutrophils. Am J Respir Cell Mol Biol. 2013;48(2):240–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Verstak B, Nagpal K, Bottomley SP, Golenbock DT, Hertzog PJ, Mansell A. MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-kappaB proinflammatory responses. J Biol Chem. 2009;284(36):24192–203.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Florence JM, Krupa A, Booshehri LM, Gajewski AL, Kurdowska AK. Disrupting the Btk pathway suppresses COPD-like lung alterations in Atherosclerosis Prone ApoE−/− mice following regular exposure to cigarette smoke. Int J Mol Sci. 2018;19(2):343.PubMedCentralCrossRefGoogle Scholar
  52. 52.
    Florence JM, Krupa A, Booshehri LM, Davis SA, Matthay MA, Kurdowska AK. Inhibiting Bruton’s tyrosine kinase rescues mice from lethal influenza-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2018;315(1):L52–l8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Phillips JE, Renteria L, Burns L, Harris P, Peng R, Bauer CM, et al. Btk inhibitor RN983 delivered by dry powder nose-only aerosol inhalation inhibits bronchoconstriction and pulmonary inflammation in the ovalbumin allergic mouse model of asthma. J Aerosol Med Pulm Drug Deliv. 2016;29(3):233–41.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhou P, Ma B, Xu S, Zhang S, Tang H, Zhu S, et al. Knockdown of Burton’s tyrosine kinase confers potent protection against sepsis-induced acute lung injury. Cell Biochem Biophys. 2014;70(2):1265–75.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Grommes C, Younes A. Ibrutinib in PCNSL: the curious cases of clinical responses and aspergillosis. Cancer Cell. 2017;31(6):731–3.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Gu Y, Huang B, Yang Y, Qi M, Lu G, Xia D, et al. Ibrutinib exacerbates bleomycin-induced pulmonary fibrosis via promoting inflammation. Inflammation. 2018;41(3):904–13.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Arthurs B, Wunderle K, Hsu M, Kim S. Invasive aspergillosis related to ibrutinib therapy for chronic lymphocytic leukemia. Respir Med Case Rep. 2017;21:27–9.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Szymczak WA, Davis MJ, Lundy SK, Dufaud C, Olszewski M, Pirofski LA. X-linked immunodeficient mice exhibit enhanced susceptibility to cryptococcus neoformans Infection. MBio. 2013;4(4):e00265–13.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kondratieva TK, Rubakova EI, Linge IA, Evstifeev VV, Majorov KB, Apt AS. B cells delay neutrophil migration toward the site of stimulus: tardiness critical for effective bacillus Calmette-Guerin vaccination against tuberculosis infection in mice. J Immunol. 2010;184(3):1227–34.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Marron TU, Rohr K, Martinez-Gallo M, Yu J, Cunningham-Rundles C. TLR signaling and effector functions are intact in XLA neutrophils. Clin Immunol. 2010;137(1):74–80.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med. 2002;166(Supplement_1):S4–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Lundy SK, Berlin AA, Martens TF, Lukacs NW. Deficiency of regulatory B cells increases allergic airway inflammation. Inflamm Res. 2005;54(12):514–21.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Shabestari MS, Rezaei N. Asthma and allergic rhinitis in a patient with BTK deficiency. J Investig Allergol Clin Immunol. 2008;18(4):300–4.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Liese JG, Wintergerst U, Tympner KD, Belohradsky BH. High-vs low-dose immunoglobulin therapy in the long-term treatment of X-linked agammaglobulinemia. Am J Dis Child. 1992;146(3):335–9.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Suri D, Bhattad S, Sharma A, Gupta A, Rawat A, Sehgal S, et al. Serial serum immunoglobulin G (IgG) trough levels in patients with X-linked agammaglobulinemia on replacement therapy with intravenous immunoglobulin: its correlation with infections in Indian children. J Clin Immunol. 2017;37(3):311–8.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Morales P, Hernandez D, Vicente R, Sole A, Moreno I, Torres JJ, Lanuza A. Lung transplantation in patients with x-linked agammaglobulinemia. In: Transplantation proceedings. Elsevier; 2003. Vol. 35, No. 5, pp. 1942–43.Google Scholar
  67. 67.
    Barnes S, Kotecha S, Douglass JA, Paul E, Hore-Lacy F, Stirling R, et al. Evolving practice: X-linked agammaglobulinemia and lung transplantation. Am J Transpl Off J Am Soc Transpl Am Soc Transpl Surg. 2015;15(4):1110–3.CrossRefGoogle Scholar
  68. 68.
    Conley ME, Rohrer J, Rapalus L, Boylin EC, Minegishi Y. Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol Rev. 2000;178:75–90.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Mårtensson I-L, Almqvist N, Grimsholm O, Bernardi AI. The pre-B cell receptor checkpoint. FEBS Lett. 2010;584(12):2572–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Yel L, Minegishi Y, Coustan-Smith E, Buckley RH, Trübel H, Pachman LM, et al. Mutations in the mu heavy-chain gene in patients with agammaglobulinemia. N Engl J Med. 1996;335(20):1486–93.PubMedCrossRefGoogle Scholar
  71. 71.
    Granados EL, Porpiglia AS, Hogan MB, Matamoros N, Krasovec S, Pignata C, et al. Clinical and molecular analysis of patients with defects in μ heavy chain gene. J Clin Invest. 2002;110(7):1029–35.CrossRefGoogle Scholar
  72. 72.
    Ferrari S, Zuntini R, Lougaris V, Soresina A, Sourkova V, Fiorini M, et al. Molecular analysis of the pre-BCR complex in a large cohort of patients affected by autosomal-recessive agammaglobulinemia. Genes Immun. 2007;8(4):325–33.PubMedCrossRefGoogle Scholar
  73. 73.
    Mohammadzadeh I, Yeganeh M, Aghamohammadi A, Parvaneh N, Behniafard N, Abolhassani H, et al. Severe primary antibody deficiency due to a novel mutation of mu heavy chain. J Investig Allergol Clin Immunol. 2012;22(1):78–9.PubMedGoogle Scholar
  74. 74.
    Silva P, Justicia A, Regueiro A, Farina S, Couselo JM, Loidi L. Autosomal recessive agammaglobulinemia due to defect in mu heavy chain caused by a novel mutation in the IGHM gene. Genes Immun. 2017;18(3):197–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Schuh W, Meister S, Roth E, Jack HM. Cutting edge: signaling and cell surface expression of a mu H chain in the absence of lambda 5: a paradigm revisited. J Immunol. 2003;171(7):3343–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Karasuyama H, Rolink A, Shinkal Y, Young F, Alt FW, Melchers F. The expression of Vpre-B/λ5 surrogate light chain in early bone marrow precursor B cells of normal and B cell-deficient mutant mice. Cell. 1994;77(1):133–43.CrossRefGoogle Scholar
  77. 77.
    Minegishi Y, Coustan-Smith E, Wang YH, Cooper MD, Campana D, Conley ME. Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia. J Exp Med. 1998;187(1):71–7.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Minegishi Y, Coustan-Smith E, Wang Y-H, Cooper MD, Campana D, Conley ME. Mutations in the human λ5/14.1 gene result in B cell deficiency and agammaglobulinemia. J Exp Med. 1998;187(1):71–7.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Wang Y, Kanegane H, Sanal O, Tezcan I, Ersoy F, Futatani T, et al. Novel Igalpha (CD79a) gene mutation in a Turkish patient with B cell-deficient agammaglobulinemia. Am J Med Genet. 2002;108(4):333–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Ferrari S, Lougaris V, Caraffi S, Zuntini R, Yang J, Soresina A, et al. Mutations of the Igβ gene cause agammaglobulinemia in man. J Exp Med. 2007;204(9):2047–51.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Meffre E, Nussenzweig MC. Deletion of immunoglobulin beta in developing B cells leads to cell death. Proc Natl Acad Sci U S A. 2002;99(17):11334–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Dobbs AK, Yang T, Farmer D, Kager L, Parolini O, Conley ME. Cutting edge: a hypomorphic mutation in Igβ (CD79b) in a patient with immunodeficiency and a leaky defect in B cell development. J Immunol. 2007;179(4):2055–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Lougaris V, Vitali M, Baronio M, Moratto D, Tampella G, Biasini A, et al. Autosomal recessive agammaglobulinemia: the third case of Igbeta deficiency due to a novel non-sense mutation. J Clin Immunol. 2014;34(4):425–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Pappu R, Cheng AM, Li B, Gong Q, Chiu C, Griffin N, et al. Requirement for B cell linker protein (BLNK) in B cell development. Science. 1999;286(5446):1949–54.PubMedCrossRefGoogle Scholar
  85. 85.
    Jin G, Hamaguchi Y, Matsushita T, Hasegawa M, Le Huu D, Ishiura N, et al. B-cell linker protein expression contributes to controlling allergic and autoimmune diseases by mediating IL-10 production in regulatory B cells. J Allergy Clin Immunol. 2013;131(6):1674–82.PubMedCrossRefGoogle Scholar
  86. 86.
    Minegishi Y, Rohrer J, Coustan-Smith E, Lederman HM, Pappu R, Campana D, et al. An essential role for BLNK in human B cell development. Science. 1999;286(5446):1954–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Van Zelm MC, Geertsema C, Nieuwenhuis N, De Ridder D, Conley ME, Schiff C, et al. Gross deletions involving IGHM, BTK, or Artemis: a model for genomic lesions mediated by transposable elements. Am J Hum Genet. 2008;82(2):320–32.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lagresle-Peyrou C, Millili M, Luce S, Boned A, Sadek H, Rouiller J, et al. The BLNK adaptor protein has a nonredundant role in human B-cell differentiation. J Allergy Clin Immunol. 2014;134(1):145–54.PubMedCrossRefGoogle Scholar
  89. 89.
    NaserEddin A, Shamriz O, Keller B, Alzyoud RM, Unger S, Fisch P, et al. Enteroviral infection in a patient with BLNK adaptor protein deficiency. J Clin Immunol. 2015;35(4):356–60.PubMedCrossRefGoogle Scholar
  90. 90.
    Bain G, Maandag ECR, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell. 1994;79(5):885–92.CrossRefGoogle Scholar
  91. 91.
    Zhuang Y, Soriano P, Weintraub H. The helix-loop-helix gene E2A is required for B cell formation. Cell. 1994;79(5):875–84.CrossRefGoogle Scholar
  92. 92.
    Sun X-H. Constitutive expression of the Id1 gene impairs mouse B cell development. Cell. 1994;79(5):893–900.PubMedCrossRefGoogle Scholar
  93. 93.
    Ben-Ali M, Yang J, Chan KW, Ben-Mustapha I, Mekki N, Benabdesselem C, et al. Homozygous transcription factor 3 gene <em>(TCF3)</em> mutation is associated with severe hypogammaglobulinemia and B-cell acute lymphoblastic leukemia. J Allergy Clin Immunol. 2017;140(4):1191–4.e4.Google Scholar
  94. 94.
    Boisson B, Wang Y-D, Bosompem A, Ma CS, Lim A, Kochetkov T, et al. A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCR–B cells. J Clin Invest. 2013;123(11):4781–5.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Dobbs AK, Bosompem A, Coustan-Smith E, Tyerman G, Saulsbury FT, Conley ME. Agammaglobulinemia associated with BCR- B cells and enhanced expression of CD19. Blood. 2011;118(7):1828–37.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sawada A, Takihara Y, Kim JY, Matsuda-Hashii Y, Tokimasa S, Fujisaki H, et al. A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans. J Clin Invest. 2003;112(11):1707–13.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Tarr PE, Sneller MC, Mechanic LJ, Economides A, Eger CM, Strober W, et al. Infections in patients with immunodeficiency with thymoma (Good syndrome). Report of 5 cases and review of the literature. Medicine. 2001;80(2):123–33.PubMedCrossRefGoogle Scholar
  98. 98.
    Miyakis S, Pefanis A, Passam FH, Christodulakis GR, Roussou PA, Mountokalakis TD. Thymoma with immunodeficiency (Good’s syndrome): review of the literature apropos three cases. Scand J Infect Dis. 2006;38(4):314–20.PubMedCrossRefGoogle Scholar
  99. 99.
    Miyakis S, Pefanis A, Passam FH, Christodulakis GR, Roussou PA, Mountokalakis TD. Thymoma with immunodeficiency (Good’s syndrome): review of the literature apropos three cases. Scand J Infect Dis. 2006;38(4):314–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Masci AM, Palmieri G, Vitiello L, Montella L, Perna F, Orlandi P, et al. Clonal expansion of CD8+ BV8 T lymphocytes in bone marrow characterizes thymoma-associated B lymphopenia. Blood. 2003;101(8):3106–8.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Leibovitz I, Zamir D, Polychuck I, Reitblat T, Gheorghiu D. Recurrent pneumonia post-thymectomy as a manifestation of Good syndrome. Eur J Intern Med. 2003;14(1):60–2.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Ohuchi M, Inoue S, Hanaoka J, Igarashi T, Tezuka N, Ozaki Y, et al. Good syndrome coexisting with leukopenia. Ann Thorac Surg. 2007;84(6):2095–7.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Ho JK, Wong MM, Tai TK, Tse DM. A rare combination of recurrent pneumonia, diarrhoea, and visual loss in a patient after thymectomy: good syndrome. Hong Kong medical journal = Xianggang yi xue za zhi. 2010;16(6):493–6.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Pena C, Intriago M, Munoz P, Gray AM, Cabrera ME. Association of Good syndrome with pure red cell aplasia: report of one case. Revista medica de Chile. 2012;140(8):1050–2.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Qu J, Lu X, Gao Q, Zhang Y. Good syndrome, a rare cause of refractory chronic diarrhea and recurrent pneumonia in a Chinese patient after thymectomy. Clin Vaccine Immunol CVI. 2013;20(7):1097–8.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Jeandel C, Gastin I, Blain H, Jouanny P, Laurain MC, Penin F, et al. Thymoma with immunodeficiency (Good’s syndrome) associated with selective cobalamin malabsorption and benign IgM-kappa gammopathy. J Intern Med. 1994;235(2):179–82.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Di Renzo M, Pasqui AL, Voltolini L, Gotti G, Pompella G, Auteri A. Myelodysplasia and Good syndrome. A case report. Clin Exp Med. 2008;8(3):171–3.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Jorge LP, Pereira CE, Jorge E. Cytomegalovirus retinitis in good syndrome. Revista Brasileira de Oftalmologia. 2018;77(3):153–5.CrossRefGoogle Scholar
  109. 109.
    Numakura T, Matsuura Y, Takiguchi H, Hara Y, Ameku K. A Good syndrome associated with pure red cell aplasia. Nihon Kokyuki Gakkai zasshi = J Jpn Respir Soc. 2011;49(9):647–50.Google Scholar
  110. 110.
    Arnold SJ, Hodgson T, Misbah SA, Patel SY, Cooper SM, Venning VA. Three difficult cases: the challenge of autoimmunity, immunodeficiency and recurrent infections in patients with Good syndrome. Br J Dermatol. 2015;172(3):774–7.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Jansen A, van Deuren M, Miller J, Litzman J, de Gracia J, Saenz-Cuesta M, et al. Prognosis of Good syndrome: mortality and morbidity of thymoma associated immunodeficiency in perspective. Clin Immunol (Orlando, Fla). 2016;171:12–7.CrossRefGoogle Scholar
  112. 112.
    Takai S, Tagawa A, Ogawa T, Kato H, Saito N, Okada S. Thymoma with immunodeficiency/good syndrome associated with myasthenia gravis. Rinsho shinkeigaku = Clin Neurol. 2017;57(5):208–13.CrossRefGoogle Scholar
  113. 113.
    Chen X, Zhang JX, Shang WW, Xie WP, Jin SX, Wang F. Aberrant peripheral immune function in a good syndrome patient. J Immunol Res. 2018;2018:6212410.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Aouadi S, Ghrairi N, Braham E, Kaabi M, Maalej S, Elgharbi LD. Acquired hypogammaglobulinemia associated with thymoma: Good syndrome. Pan Afr Med J. 2017;28:253.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Makinson A, Corne P, Pelle C, Ben Hadj Salem M, Pouessel D, Landreau L, et al. Good syndrome and cytomegalovirus pneumonia. La Revue de medecine interne. 2003;24(5):330–1.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Jian L, Bin D, Haiyun W. Fatal pneumocystis pneumonia with good syndrome and pure red cell aplasia. Clin Infect Dis Off Publ Infect Dis Soc Am. 2004;39(11):1740–1.CrossRefGoogle Scholar
  117. 117.
    Katsuki Y, Suzuki S, Takahashi Y, Satoh T, Nogawa S, Tanaka K, et al. A case of good syndrome accompanied by myasthenia gravis: immunological evaluations. Nihon Rinsho Men’eki Gakkai kaishi = Jpn J Clin Immunol. 2006;29(2):102–6.CrossRefGoogle Scholar
  118. 118.
    Fernandez-Villar A, Garcia-Tejedor JL, Leiro Fernandez V, Botana Rial M, Mendez Garrido A, Rivo Vazquez E, et al. Tracheobronchial wall thickening secondary to herpesvirus infection in a patient with Goods syndrome. An Med Interna (Madrid, Spain : 1984). 2008;25(5):234–6.Google Scholar
  119. 119.
    Inomata T, Honda M, Murakami A. Atypical VZV retinitis in a patient with Good syndrome. Ocul Immunol Inflamm. 2018;26(2):194–8.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Fukushima A, Ichimura Y, Obata S, Kinoshita-Ise M, Fujio Y, Takeno M, et al. Thymoma-associated multi-organ autoimmunity: a case of graft-versus-host disease-like erythroderma complicated by good syndrome successfully treated by thymectomy. J Dermatol. 2017;44(7):830–5.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Thongngarm T, Boonyasiri A, Pradubpongsa P, Tesavibul N, Anekpuritanang T, Kreetapirom P, Sompornrattanaphan M. Features and outcomes of immunoglobulin therapy in patients with good syndrome at Thailand’s largest tertiary referral hospital. Asian Pac J Allergy Immunol. 2018 Jun 1.Google Scholar
  122. 122.
    Chijimatsu Y, Nakazato Y, Homma H, Mizuguchi K. A case report of Good syndrome complicated by diffuse panbronchiolitis. Nihon Kyobu Shikkan Gakkai Zasshi. 1982;20(7):803–8.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Tsuburai T, Ikehara K, Suzuki S, Shinohara T, Mishima W, Tagawa A, et al. Hypogammaglobulinemia associated with thymoma (Good syndrome) similar to diffuse panbronchiolitis. Nihon Kokyuki Gakkai zasshi = J Jpn Respir Soc. 2003;41(6):421–5.Google Scholar
  124. 124.
    Ogoshi T, Ishimoto H, Yatera K, Oda K, Akata K, Yamasaki K, et al. A case of good syndrome with pulmonary lesions similar to diffuse panbronchiolitis. Intern Med (Tokyo, Japan). 2012;51(9):1087–91.CrossRefGoogle Scholar
  125. 125.
    Lee SH, Lee SM, Yang SC, Yoo CG, Kim YW, Shim YS, et al. A case of granulomatous lung disease in a patient with Good’s syndrome. Korean J Intern Med. 2008;23(4):219–22.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Maccari ME, Abolhassani H, Aghamohammadi A, Aiuti A, Aleinikova O, Bangs C, Baris S, Barzaghi F, Baxendale H, Buckland M, Burns SO. Disease evolution and response to rapamycin in activated phosphoinositide 3-kinase δ syndrome: the European Society for Immunodeficiencies-activated phosphoinositide 3-kinase δ syndrome registry. Front Immunol. 2018;9:543.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Angulo I, Vadas O, Garcon F, Banham-Hall E, Plagnol V, Leahy TR, et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science. 2013;342(6160):866–71.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Elkaim E, Neven B, Bruneau J, Mitsui-Sekinaka K, Stanislas A, Heurtier L, et al. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase delta syndrome 2: a cohort study. J Allergy Clin Immunol. 2016;138(1):210–8.e9.CrossRefGoogle Scholar
  129. 129.
    Stokes CA, Condliffe AM. Phosphoinositide 3-kinase delta (PI3Kdelta) in respiratory disease. Biochem Soc Trans. 2018;46(2):361–9.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Southworth T, Mason S, Bell A, Ramis I, Calbet M, Domenech A, et al. PI3K, p38 and JAK/STAT signalling in bronchial tissue from patients with asthma following allergen challenge. Biomark Res. 2018;6(14):018–0128.Google Scholar
  131. 131.
    Marwick JA, Adcock IM, Chung KF. Overcoming reduced glucocorticoid sensitivity in airway disease: molecular mechanisms and therapeutic approaches. Drugs. 2010;70(8):929–48.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Marwick JA, Caramori G, Casolari P, Mazzoni F, Kirkham PA, Adcock IM, et al. A role for phosphoinositol 3-kinase delta in the impairment of glucocorticoid responsiveness in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2010;125(5):1146–53.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Xia M, Xu H, Dai W, Zhu C, Wu L, Yan S, et al. The role of HDAC2 in cigarette smoke-induced airway inflammation in a murine model of asthma and the effect of intervention with roxithromycin. J Asthma. 2018;55(4):337–44.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Kim SR, Lee KS, Park HS, Park SJ, Min KH, Moon H, et al. HIF-1alpha inhibition ameliorates an allergic airway disease via VEGF suppression in bronchial epithelium. Eur J Immunol. 2010;40(10):2858–69.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Lee KS, Jeong JS, Kim SR, Cho SH, Kolliputi N, Ko YH, et al. Phosphoinositide 3-kinase-delta regulates fungus-induced allergic lung inflammation through endoplasmic reticulum stress. Thorax. 2016;71(1):52–63.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Jeong JS, Lee KB, Kim SR, Kim DI, Park HJ, Lee HK, et al. Airway epithelial phosphoinositide 3-kinase-delta contributes to the modulation of fungi-induced innate immune response. Thorax. 2018;73(8):758–68.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Kan-o K, Matsumoto K, Asai-Tajiri Y, Fukuyama S, Hamano S, Seki N, et al. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells. Biochem Biophys Res Commun. 2013;435(2):195–201.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Dinavahi SS, Nyayapathy S, Perumal Y, Dharmarajan S, Viswanadha S. Combined inhibition of PDE4 and PI3Kdelta modulates the inflammatory component involved in the progression of chronic obstructive pulmonary disease. Drug Res. 2014;64(4):214–9.Google Scholar
  139. 139.
    Doukas J, Eide L, Stebbins K, Racanelli-Layton A, Dellamary L, Martin M, et al. Aerosolized phosphoinositide 3-kinase gamma/delta inhibitor TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol] as a therapeutic candidate for asthma and chronic obstructive pulmonary disease. J Pharmacol Exp Ther. 2009;328(3):758–65.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Sun XJ, Li ZH, Zhang Y, Zhou G, Zhang JQ, Deng JM, et al. Combination of erythromycin and dexamethasone improves corticosteroid sensitivity induced by CSE through inhibiting PI3K-delta/Akt pathway and increasing GR expression. Am J Physiol Lung Cell Mol Physiol. 2015;309(2):8.CrossRefGoogle Scholar
  141. 141.
    Lee KS, Park SJ, Kim SR, Min KH, Jin SM, Puri KD, et al. Phosphoinositide 3-kinase-delta inhibitor reduces vascular permeability in a murine model of asthma. J Allergy Clin Immunol. 2006;118(2):403–9.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    To Y, Ito K, Kizawa Y, Failla M, Ito M, Kusama T, et al. Targeting phosphoinositide-3-kinase-delta with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(7):897–904.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Kracker S, Di Virgilio M, Schwartzentruber J, Cuenin C, Forveille M, Deau MC, et al. An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex. J Allergy Clin Immunol. 2015;135(4):998–1007.e6.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Wiestner A. The role of B-cell receptor inhibitors in the treatment of patients with chronic lymphocytic leukemia. Haematologica. 2015;100(12):1495–507.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Hammadi SA, Almarzooqi S, Abdul-Kader HM, Saraswathiamma D, Souid AK. The PI3Kdelta inhibitor idelalisib suppresses liver and lung cellular respiration. Int J Physiol Pathophysiol Pharmacol. 2015;7(3):115–25.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Azizi G, Abolhassani H, Mahdaviani SA, Chavoshzadeh Z, Eshghi P, Yazdani R, et al. Clinical, immunologic, molecular analyses and outcomes of iranian patients with LRBA deficiency: a longitudinal study. Pediatr Allergy Immunol. 2017;28(5):478–84.CrossRefGoogle Scholar
  147. 147.
    Shamriz O, Shadur B, NaserEddin A, Zaidman I, Simanovsky N, Elpeleg O, et al. Respiratory manifestations in LPS-responsive beige-like anchor (LRBA) protein-deficient patients. Eur J Pediatr. 2018;177(8):1163–72.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Al Sukaiti N, AbdelRahman K, AlShekaili J, Al Oraimi S, Al Sinani A, Al Rahbi N, Cho V, Field M, Cook MC. Agammaglobulinaemia despite terminal B‐cell differentiation in a patient with a novel LRBA mutation. Clin Transl Immunology. 2017;6(5):e144.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Shokri S, Nabavi M, Hirschmugl T, Aghamohammadi A, Arshi S, Bemanian MH, et al. LPS-responsive beige-like anchor gene mutation associated with possible bronchiolitis obliterans organizing pneumonia associated with hypogammaglobulinemia and normal IgM phenotype and low number of B cells. Acta Med Iran. 2016;54(10):620–3.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Alkhairy OK, Abolhassani H, Rezaei N, Fang M, Andersen KK, Chavoshzadeh Z, et al. Spectrum of phenotypes associated with mutations in LRBA. J Clin Immunol. 2016;36(1):33–45.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Schreiner F, Plamper M, Dueker G, Schoenberger S, Gamez-Diaz L, Grimbacher B, et al. Infancy-onset T1DM, short stature, and severe immunodysregulation in two siblings with a homozygous LRBA mutation. J Clin Endocrinol Metab. 2016;101(3):898–904.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Liu Y, Yang J, Wu Q, Han R, Yan W, Yuan J, Ji X, Li Y, Yao W, Ni C. LRBA gene polymorphisms and risk of coal workers’ pneumoconiosis: a case–control study from China. Int J Environ Res Public Health. 2017;14(10):1138.PubMedCentralCrossRefGoogle Scholar
  153. 153.
    Tedder TF, Inaoki M, Sato S. The CD19–CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity. 1997;6(2):107–18.PubMedCrossRefGoogle Scholar
  154. 154.
    Skendros P, Rondeau S, Chateil JF, Bui S, Bocly V, Moreau JF, et al. Misdiagnosed CD19 deficiency leads to severe lung disease. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2014;25(6):603–6.Google Scholar
  155. 155.
    van Zelm MC, Reisli I, van der Burg M, Castaño D, van Noesel CJM, van Tol MJD, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354(18):1901–12.PubMedCrossRefGoogle Scholar
  156. 156.
    Kanegane H, Agematsu K, Futatani T, Sira MM, Suga K, Sekiguchi T, et al. Novel mutations in a Japanese patient with CD19 deficiency. Genes Immun. 2007;8(8):663.PubMedCrossRefGoogle Scholar
  157. 157.
    Artac H, Reisli I, Kara R, Pico-Knijnenburg I, Adin-Cinar S, Pekcan S, et al. B-cell maturation and antibody responses in individuals carrying a mutated CD19 allele. Genes Immun. 2010;11(7):523.PubMedCrossRefGoogle Scholar
  158. 158.
    Vince N, Boutboul D, Mouillot G, Just N, Peralta M, Casanova J-L, et al. Defects in the CD19 complex predispose to glomerulonephritis, as well as IgG1 subclass deficiency. J Allergy Clin Immunol. 2011;127(2):538.PubMedCrossRefGoogle Scholar
  159. 159.
    van Zelm MC, Smet J, van der Burg M, Ferster A, Le PQ, Schandené L, et al. Antibody deficiency due to a missense mutation in CD19 demonstrates the importance of the conserved tryptophan 41 in immunoglobulin superfamily domain formation. Hum Mol Genet. 2011;20(9):1854–63.PubMedCrossRefGoogle Scholar
  160. 160.
    van Zelm MC, Smet J, van der Burg M, Ferster A, Le PQ, Schandene L, et al. Antibody deficiency due to a missense mutation in CD19 demonstrates the importance of the conserved tryptophan 41 in immunoglobulin superfamily domain formation. Hum Mol Genet. 2011;20(9):1854–63.PubMedCrossRefGoogle Scholar
  161. 161.
    Kelic S, Levy S, Suarez C, Weinstein DE. CD81 regulates neuron-induced astrocyte cell-cycle exit. Mol Cell Neurosci. 2001;17(3):551–60.PubMedCrossRefGoogle Scholar
  162. 162.
    Geisert EE Jr, Williams RW, Geisert GR, Fan L, Asbury AM, Maecker HT, et al. Increased brain size and glial cell number in CD81-null mice. J Comp Neurol. 2002;453(1):22–32.PubMedCrossRefGoogle Scholar
  163. 163.
    Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JP, Levy S, et al. Reduced fertility of female mice lacking CD81. Dev Biol. 2006;290(2):351–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Song BK, Levy S, Geisert EE Jr. Increased density of retinal pigment epithelium in cd81−/− mice. J Cell Biochem. 2004;92(6):1160–70.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    van Zelm MC, Smet J, Adams B, Mascart F, Schandené L, Janssen F, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120(4):1265–74.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Takeda Y, He P, Tachibana I, Zhou B, Miyado K, Kaneko H, et al. Double deficiency of tetraspanins CD9 and CD81 alters cell motility and protease production of macrophages and causes chronic obstructive pulmonary disease-like phenotype in mice. J Biol Chem. 2008;283(38):26089–97.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Churg A, Zhou S, Wright JL. Matrix metalloproteinases in COPD. Eur Respir J. 2012;39(1):197.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Deng J, Yeung VP, Tsitoura D, DeKruyff RH, Umetsu DT, Levy S. Allergen-induced airway hyperreactivity is diminished in CD81-deficient mice. J Immunol. 2000;165(9):5054–61.PubMedCrossRefGoogle Scholar
  169. 169.
    Roberts ML, Luxembourg AT, Cooper NR. Epstein-Barr virus binding to CD21, the virus receptor, activates resting B cells via an intracellular pathway that is linked to B cell infection. J Gen Virol. 1996;77(Pt 12):3077–85.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Del Nagro CJ, Kolla RV, Rickert RC. A critical role for complement C3d and the B cell coreceptor (CD19/CD21) complex in the initiation of inflammatory arthritis. J Immunol. 2005;175(8):5379–89.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Thiel J, Kimmig L, Salzer U, Grudzien M, Lebrecht D, Hagena T, et al. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol. 2012;129(3):801–10.e6.PubMedCrossRefGoogle Scholar
  172. 172.
    Wentink MW, Lambeck AJ, van Zelm MC, Simons E, van Dongen JJ, IJspeert H, et al. CD21 and CD19 deficiency: two defects in the same complex leading to different disease modalities. Clin Immunol (Orlando, Fla). 2015;161(2):120–7.CrossRefGoogle Scholar
  173. 173.
    Rosain J, Miot C, Lambert N, Rousselet MC, Pellier I, Picard C. CD21 deficiency in 2 siblings with recurrent respiratory infections and hypogammaglobulinemia. J Allergy Clin Immunol Pract. 2017;5(6):1765–7.PubMedCrossRefGoogle Scholar
  174. 174.
    Farrington M, Grosmaire LS, Nonoyama S, Fischer SH, Hollenbaugh D, Ledbetter JA, et al. CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. Proc Natl Acad Sci. 1994;91(3):1099–103.PubMedCrossRefGoogle Scholar
  175. 175.
    Sneller MC. Common variable immunodeficiency. Am J Med Sci. 2001;321(1):42–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Grimbacher B, Hutloff A, Schlesier M, Glocker E, Warnatz K, Dräger R, et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol. 2003;4(3):261.PubMedCrossRefGoogle Scholar
  177. 177.
    Salzer U, Maul-Pavicic A, Cunningham-Rundles C, Urschel S, Belohradsky BH, Litzman J, et al. ICOS deficiency in patients with common variable immunodeficiency. Clin Immunol. 2004;113(3):234–40.PubMedCrossRefGoogle Scholar
  178. 178.
    Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829.PubMedCrossRefGoogle Scholar
  179. 179.
    Salzer U, Chapel HM, Webster ADB, Pan-Hammarström Q, Schmitt-Graeff A, Schlesier M, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37(8):820.PubMedCrossRefGoogle Scholar
  180. 180.
    Gathmann B, Mahlaoui N, Gérard L, Oksenhendler E, Warnatz K, Schulze I, et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134(1):116–26.PubMedCrossRefGoogle Scholar
  181. 181.
    Oksenhendler E, Gérard L, Fieschi C, Malphettes M, Mouillot G, Jaussaud R, et al. Infections in 252 patients with common variable immunodeficiency. Clin Infect Dis. 2008;46(10):1547–54.PubMedCrossRefGoogle Scholar
  182. 182.
    Garcia MAM, De Rojas MDHF, Manzur MDN, Pamplona MPM, Torrero LC, Macian V, et al. Respiratory disorders in common variable immunodeficiency. Respir Med. 2001;95(3):191–5.CrossRefGoogle Scholar
  183. 183.
    Cunningham-Rundles C. Clinical and immunologic analyses of 103 patients with common variable immunodeficiency. J Clin Immunol. 1989;9(1):22–33.PubMedCrossRefGoogle Scholar
  184. 184.
    Cunningham-Rundles C. Common variable immunodeficiency. Curr Allergy Asthma Rep. 2001;1(5):421–9.PubMedCrossRefGoogle Scholar
  185. 185.
    Bates CA, Ellison MC, Lynch DA, Cool CD, Brown KK, Routes JM. Granulomatous-lymphocytic lung disease shortens survival in common variable immunodeficiency. J Allergy Clin Immunol. 2004;114(2):415–21.PubMedCrossRefGoogle Scholar
  186. 186.
    Quinti I, Soresina A, Spadaro G, Martino S, Donnanno S, Agostini C, et al. Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency. J Clin Immunol. 2007;27(3):308–16.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Thickett KM, Kumararatne DS, Banerjee AK, Dudley R, Stableforth DE. Common variable immune deficiency: respiratory manifestations, pulmonary function and high-resolution CT scan findings. QJM. 2002;95(10):655–62.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Maglione PJ, Overbey JR, Radigan L, Bagiella E, Cunningham-Rundles C. Pulmonary radiologic findings in common variable immunodeficiency: clinical and immunological correlations. Ann Allergy Asthma Immunol. 2014;113(4):452–9.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Park JH, Levinson AI. Granulomatous-lymphocytic interstitial lung disease (GLILD) in common variable immunodeficiency (CVID). Clin Immunol. 2010;134(2):97–103.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Levinson AI, Hopewell PC, Stites DP, Spitler LE, Fudenberg HH. Coexistent lymphoid interstitial pneumonia, pernicious anemia, and agammaglobulinemia: comment on autoimmune pathogenesis. Arch Intern Med. 1976;136(2):213–6.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Kohler PF, Cook RD, Brown WR, Manguso RL. Common variable hypogammaglobulinemia with T-cell nodular lymphoid interstitial pneumonitis and B-cell nodular lymphoid hyperplasia: different lymphocyte populations with a similar response to prednisone therapy. J Allergy Clin Immunol. 1982;70(4):299–305.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Dukes RJ, Rosenow EC, Hermans PE. Pulmonary manifestations of hypogammaglobulinaemia. Thorax. 1978;33(5):603–7.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Wheat WH, Cool CD, Morimoto Y, Rai PR, Kirkpatrick CH, Lindenbaum BA, et al. Possible role of human herpesvirus 8 in the lymphoproliferative disorders in common variable immunodeficiency. J Exp Med. 2005;202(4):479–84.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Jolles S, Carne E, Brouns M, El-Shanawany T, Williams P, Marshall C, et al. FDG PET-CT imaging of therapeutic response in granulomatous lymphocytic interstitial lung disease (GLILD) in common variable immunodeficiency (CVID). Clin Exp Immunol. 2017;187(1):138–45.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Lucas M, Lee M, Lortan J, Lopez-Granados E, Misbah S, Chapel H. Infection outcomes in patients with common variable immunodeficiency disorders: relationship to immunoglobulin therapy over 22 years. J Allergy Clin Immunol. 2010;125(6):1354–60.CrossRefGoogle Scholar
  196. 196.
    de Gracia J, Vendrell M, Álvarez A, Pallisa E, Rodrigo M-J, de la Rosa D, et al. Immunoglobulin therapy to control lung damage in patients with common variable immunodeficiency. Int Immunopharmacol. 2004;4(6):745–53.Google Scholar
  197. 197.
    Busse PJ, Razvi S, Cunningham-Rundles C. Efficacy of intravenous immunoglobulin in the prevention of pneumonia in patients with common variable immunodeficiency. J Allergy Clin Immunol. 2002;109(6):1001–4.PubMedCrossRefGoogle Scholar
  198. 198.
    Kuijpers TW, Bende RJ, Baars PA, Grummels A, Derks IAM, Dolman KM, et al. CD20 deficiency in humans results in impaired T cell–independent antibody responses. J Clin Invest. 2010;120(1):214–22.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Morsy DED, Sanyal R, Zaiss AK, Deo R, Muruve DA, Deans JP. Reduced T-dependent humoral immunity in CD20-deficient mice. J Immunol. 2013;191:3112–8. Scholar
  200. 200.
    Breitling S, Hui Z, Zabini D, Hu Y, Hoffmann J, Goldenberg NM, et al. The mast cell-B cell axis in lung vascular remodeling and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2017;312(5):L710–L21.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Alvarez B, Arcos J, Fernandez-Guerrero ML. Pulmonary infectious diseases in patients with primary immunodeficiency and those treated with biologic immunomodulating agents. Curr Opin Pulm Med. 2011;17(3):172–9.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Elsegeiny W, Eddens T, Chen K, Kolls JK. Anti-CD20 antibody therapy and susceptibility to pneumocystis pneumonia. Infect Immun. 2015;83(5):2043–52.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Sato M, Ito S, Ogura M, Kamei K, Miyairi I, Miyata I, et al. Atypical pneumocystis jiroveci pneumonia with multiple nodular granulomas after rituximab for refractory nephrotic syndrome. Pediatr Nephrol. 2013;28(1):145–9.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Cherin P, de Jaeger C, Crave JC, Delain JC, Tadmouri A, Amoura Z. Subcutaneous immunoglobulins for the treatment of a patient with antisynthetase syndrome and secondary chronic immunodeficiency after anti-CD20 treatment: a case report. J Med Case Rep. 2017;11(1):017–1211.CrossRefGoogle Scholar
  205. 205.
    Dogan M, Erol M, Cesur Y, Yuca SA, Doğan Ş. The effect of 25-hydroxyvitamin D3 on the immune system. J Pediatr Endocrinol Metab. 2009;22(10):929–36.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Bogaert DJ, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet. 2016;53(9):575–90.CrossRefGoogle Scholar
  207. 207.
    Teichmann LL, Cullen JL, Kashgarian M, Dong C, Craft J, Shlomchik MJ. Local triggering of the ICOS coreceptor by CD11c(+) myeloid cells drives organ inflammation in lupus. Immunity. 2015;42(3):552–65.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Li Z, Lu H, Gu J, Liu J, Zhu Q, Lu Y, et al. Chitinase 3-Like-1-deficient splenocytes deteriorated the pathogenesis of acute graft-versus-host disease via regulating differentiation of Tfh cells. Inflammation. 2017;40(5):1576–88.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Gao X, Zhao L, Wang S, Yang J, Yang X. Enhanced inducible costimulator ligand (ICOS-L) expression on dendritic cells in interleukin-10 deficiency and its impact on T-cell subsets in respiratory tract infection. Mol Med. 2013;19:346–56.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol. 2007;148(1):32–46.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Tanaka C, Fujimoto M, Hamaguchi Y, Sato S, Takehara K, Hasegawa M. Inducible costimulator ligand regulates bleomycin-induced lung and skin fibrosis in a mouse model independently of the inducible costimulator/inducible costimulator ligand pathway. Arthritis Rheum. 2010;62(6):1723–32.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Ma CS, Wong N, Rao G, Avery DT, Torpy J, Hambridge T, et al. Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. J Allergy Clin Immunol. 2015;136(4):993–1006.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Shalaby KH, Jo T, Nakada E, Allard-Coutu A, Tsuchiya K, Hirota N, et al. ICOS-expressing CD4 T cells induced via TLR4 in the nasal mucosa are capable of inhibiting experimental allergic asthma. J Immunol (Baltimore, Md : 1950). 2012;189(6):2793–804.CrossRefGoogle Scholar
  214. 214.
    Shalaby KH, Al Heialy S, Tsuchiya K, Farahnak S, McGovern TK, Risse PA, et al. The TLR4-TRIF pathway can protect against the development of experimental allergic asthma. Immunology. 2017;152(1):138–49.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Berron-Ruiz L, Lopez-Herrera G, Vargas-Hernandez A, Mogica-Martinez D, Garcia-Latorre E, Blancas-Galicia L, et al. Lymphocytes and B-cell abnormalities in patients with common variable immunodeficiency (CVID). Allergol Immunopathol. 2014;42(1):35–43.CrossRefGoogle Scholar
  216. 216.
    Tamachi T, Watanabe N, Oya Y, Kagami S, Hirose K, Saito Y, et al. B and T lymphocyte attenuator inhibits antigen-induced eosinophil recruitment into the airways. Int Arch Allergy Immunol. 2007;143(Suppl 1):50–5.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Shilling RA, Clay BS, Tesciuba AG, Berry EL, Lu T, Moore TV, et al. CD28 and ICOS play complementary non-overlapping roles in the development of Th2 immunity in vivo. Cell Immunol. 2009;259(2):177–84.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Wolf AI, Mozdzanowska K, Quinn WJ 3rd, Metzgar M, Williams KL, Caton AJ, et al. Protective antiviral antibody responses in a mouse model of influenza virus infection require TACI. J Clin Invest. 2011;121(10):3954–64.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Jabara HH, Lee JJ, Janssen E, Ullas S, Liadaki K, Garibyan L, et al. Heterozygosity for transmembrane activator and calcium modulator ligand interactor A144E causes haploinsufficiency and pneumococcal susceptibility in mice. J Allergy Clin Immunol. 2017;139(4):1293–301.e4.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Speletas M, Mamara A, Papadopoulou-Alataki E, Iordanakis G, Liadaki K, Bardaka F, et al. TNFRSF13B/TACI alterations in Greek patients with antibody deficiencies. J Clin Immunol. 2011;31(4):550–9.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Ameratunga R, Koopmans W, Woon ST, Leung E, Lehnert K, Slade CA, et al. Epistatic interactions between mutations of TACI (TNFRSF13B) and TCF3 result in a severe primary immunodeficiency disorder and systemic lupus erythematosus. Clin Transl Immunol. 2017;6(10):e159.CrossRefGoogle Scholar
  222. 222.
    Speletas M, Salzer U, Florou Z, Petinaki E, Daniil Z, Bardaka F, et al. Heterozygous alterations of TNFRSF13B/TACI in tonsillar hypertrophy and sarcoidosis. Clin Dev Immunol. 2013;2013:532437.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Barroeta Seijas AB, Graziani S, Cancrini C, Finocchi A, Ferrari S, Miniero R, et al. The impact of TACI mutations: from hypogammaglobulinemia in infancy to autoimmunity in adulthood. Int J Immunopathol Pharmacol. 2012;25(2):407–14.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Chen K, Coonrod EM, Kumanovics A, Franks ZF, Durtschi JD, Margraf RL, et al. Germline mutations in NFKB2 implicate the noncanonical NF-kappaB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet. 2013;93(5):812–24.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Lee CE, Fulcher DA, Whittle B, Chand R, Fewings N, Field M, et al. Autosomal-dominant B-cell deficiency with alopecia due to a mutation in NFKB2 that results in nonprocessable p100. Blood. 2014;124(19):2964–72.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Lindsley AW, Qian Y, Valencia CA, Shah K, Zhang K, Assa’ad A. Combined immune deficiency in a patient with a novel NFKB2 mutation. J Clin Immunol. 2014;34(8):910–5.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Brue T, Quentien MH, Khetchoumian K, Bensa M, Capo-Chichi JM, Delemer B, et al. Mutations in NFKB2 and potential genetic heterogeneity in patients with DAVID syndrome, having variable endocrine and immune deficiencies. BMC Med Genet. 2014;15:139.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Lougaris V, Tabellini G, Vitali M, Baronio M, Patrizi O, Tampella G, et al. Defective natural killer-cell cytotoxic activity in NFKB2-mutated CVID-like disease. J Allergy Clin Immunol. 2015;135(6):1641–3.PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Liu Y, Hanson S, Gurugama P, Jones A, Clark B, Ibrahim MA. Novel NFKB2 mutation in early-onset CVID. J Clin Immunol. 2014;34(6):686–90.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Shi C, Wang F, Tong A, Zhang X-Q, Song H-M, Liu Z-Y, et al. NFKB2 mutation in common variable immunodeficiency and isolated adrenocorticotropic hormone deficiency: a case report and review of literature. Medicine. 2016;95(40):e5081.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Shi C, Wang F, Tong A, Zhang XQ, Song HM, Liu ZY, et al. NFKB2 mutation in common variable immunodeficiency and isolated adrenocorticotropic hormone deficiency: a case report and review of literature. Medicine. 2016;95(40):e5081.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Yang L, Cui H, Wang Z, Zhang B, Ding J, Liu L, et al. Loss of negative feedback control of nuclear factor-kappaB2 activity in lymphocytes leads to fatal lung inflammation. Am J Pathol. 2010;176(6):2646–57.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Low JT, Hughes P, Lin A, Siebenlist U, Jain R, Yaprianto K, et al. Impact of loss of NF-kappaB1, NF-kappaB2 or c-REL on SLE-like autoimmune disease and lymphadenopathy in Fas(lpr/lpr) mutant mice. Immunol Cell Biol. 2016;94(1):66–78.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Xu W, Santini PA, Matthews AJ, Chiu A, Plebani A, He B, et al. Viral double-stranded RNA triggers Ig class switching by activating upper respiratory mucosa B cells through an innate TLR3 pathway involving BAFF. J Immunol. 2008;181(1):276–87.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Lohmeyer J, Morty RE, Herold S. Antibiotic therapy-induced collateral damage: IgA takes center stage in pulmonary host defense. J Clin Invest. 2018;128(8):3234–6.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Chen K, Xu W, Wilson M, He B, Miller NW, Bengten E, et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat Immunol. 2009;10(8):889–98.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Sutherland AP, Ng LG, Fletcher CA, Shum B, Newton RA, Grey ST, et al. BAFF augments certain Th1-associated inflammatory responses. J Immunol. 2005;174(9):5537–44.PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Francois A, Gombault A, Villeret B, Alsaleh G, Fanny M, Gasse P, et al. B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis. J Autoimmun. 2015;56:1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Matsushita T, Kobayashi T, Mizumaki K, Kano M, Sawada T, Tennichi M, et al. BAFF inhibition attenuates fibrosis in scleroderma by modulating the regulatory and effector B cell balance. Sci Adv. 2018;4(7):eaas9944.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Whitsett TG, Cheng E, Inge L, Asrani K, Jameson NM, Hostetter G, et al. Elevated expression of Fn14 in non-small cell lung cancer correlates with activated EGFR and promotes tumor cell migration and invasion. Am J Pathol. 2012;181(1):111–20.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Xu Z, Pone EJ, Al-Qahtani A, Park SR, Zan H, Casali P. Regulation of aicda expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Crit Rev Immunol. 2007;27(4):367–97.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature. 2010;463(7284):1042–7.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Aghamohammadi A, Parvaneh N, Rezaei N, Moazzami K, Kashef S, Abolhassani H, et al. Clinical and laboratory findings in hyper-IgM syndrome with novel CD40L and AICDA mutations. J Clin Immunol. 2009;29(6):769–76.PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Mahdaviani SA, Hirbod-Mobarakeh A, Wang N, Aghamohammadi A, Hammarstrom L, Masjedi MR, et al. Novel mutation of the activation-induced cytidine deaminase gene in a Tajik family: special review on hyper-immunoglobulin M syndrome. Expert Rev Clin Immunol. 2012;8(6):539–46.PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Askenase PW, Bryniarski K, Paliwal V, Redegeld F, Groot Kormelink T, Kerfoot S, et al. A subset of AID-dependent B-1a cells initiates hypersensitivity and pneumococcal pneumonia resistance. Ann N Y Acad Sci. 2015;1362:200–14.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Yamamoto N, Kerfoot SM, Hutchinson AT, Dela Cruz CS, Nakazawa N, Szczepanik M, et al. Expression of activation-induced cytidine deaminase enhances the clearance of pneumococcal pneumonia: evidence of a subpopulation of protective anti-pneumococcal B1a cells. Immunology. 2016;147(1):97–113.PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Weeks LD, Fu P, Gerson SL. Uracil-DNA glycosylase expression determines human lung cancer cell sensitivity to pemetrexed. Mol Cancer Ther. 2013;12(10):2248–60.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Minkah N, Macaluso M, Oldenburg DG, Paden CR, White DW, McBride KM, et al. Absence of the uracil DNA glycosylase of murine gammaherpesvirus 68 impairs replication and delays the establishment of latency in vivo. J Virol. 2015;89(6):3366–79.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Poulogiannis G, Frayling IM, Arends MJ. DNA mismatch repair deficiency in sporadic colorectal cancer and lynch syndrome. Histopathology. 2010;56(2):167–79.PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Haraldsdottir S, Roth R, Pearlman R, Hampel H, Arnold CA, Frankel WL. Mismatch repair deficiency concordance between primary colorectal cancer and corresponding metastasis. Familial Cancer. 2016;15(2):253–60.PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Giampieri R, Maccaroni E, Mandolesi A, Del Prete M, Andrikou K, Faloppi L, et al. Mismatch repair deficiency may affect clinical outcome through immune response activation in metastatic gastric cancer patients receiving first-line chemotherapy. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc. 2017;20(1):156–63.Google Scholar
  252. 252.
    Spetsotaki KN, Tsiambas E, Stamatelopoulos A, Fotiades PP, Kastanioudakis I, Tomos P, et al. DNA mismatch repair deficiency in lung and oral cavity carcinomas: the role of histogenetic origin. J BUON Off J Balkan Union Oncol. 2017;22(3):606–9.Google Scholar
  253. 253.
    Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(19):2206–11.CrossRefGoogle Scholar
  254. 254.
    Wu X, Tsai CY, Patam MB, Zan H, Chen JP, Lipkin SM, et al. A role for the MutL mismatch repair Mlh3 protein in immunoglobulin class switch DNA recombination and somatic hypermutation. J Immunol (Baltimore, Md : 1950). 2006;176(9):5426–37.CrossRefGoogle Scholar
  255. 255.
    Downey CM, Jirik FR. DNA mismatch repair deficiency accelerates lung neoplasm development in K-ras(LA1/+) mice: a brief report. Cancer Med. 2015;4(6):897–902.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Takamochi K, Takahashi F, Suehara Y, Sato E, Kohsaka S, Hayashi T, et al. DNA mismatch repair deficiency in surgically resected lung adenocarcinoma: microsatellite instability analysis using the Promega panel. Lung Cancer (Amsterdam, Netherlands). 2017;110:26–31.CrossRefGoogle Scholar
  257. 257.
    Chung C, Christianson M. Predictive and prognostic biomarkers with therapeutic targets in breast, colorectal, and non-small cell lung cancers: a systemic review of current development, evidence, and recommendation. J Oncol Pharm Pract Off Publ Int Soc Oncol Pharm Pract. 2014;20(1):11–28.CrossRefGoogle Scholar
  258. 258.
    Warth A, Korner S, Penzel R, Muley T, Dienemann H, Schirmacher P, et al. Microsatellite instability in pulmonary adenocarcinomas: a comprehensive study of 480 cases. Virchows Archiv Int J Pathol. 2016;468(3):313–9.CrossRefGoogle Scholar
  259. 259.
    Moyano AJ, Feliziani S, Di Rienzo JA, Smania AM. Simple sequence repeats together with mismatch repair deficiency can bias mutagenic pathways in Pseudomonas aeruginosa during chronic lung infection. PLoS One. 2013;8(11):e80514.PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Conaway RC, Conaway JW. The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem Sci. 2009;34(2):71–7.PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Yao W, King DA, Beckwith SL, Gowans GJ, Yen K, Zhou C, et al. The INO80 complex requires the Arp5-Ies6 subcomplex for chromatin remodeling and metabolic regulation. Mol Cell Biol. 2016;36(6):979–91.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Dembowski JA, DeLuca NA. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes. PLoS Pathog. 2015;11(5):e1004939.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Zhang S, Zhou B, Wang L, Li P, Bennett BD, Snyder R, et al. INO80 is required for oncogenic transcription and tumor growth in non-small cell lung cancer. Oncogene. 2017;36(10):1430–9.PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Leung AW, Hung SS, Backstrom I, Ricaurte D, Kwok B, Poon S, et al. Combined use of gene expression modeling and siRNA screening identifies genes and pathways which enhance the activity of cisplatin when added at no effect levels to non-small cell lung Cancer cells in vitro. PLoS One. 2016;11(3):e0150675.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Stiehm RE. The four most common pediatric immunodeficiencies. Adv Exp Med Biol. 2007;601:15–26.PubMedCrossRefPubMedCentralGoogle Scholar
  266. 266.
    Karaca NE, Aksu G, Gulez N, Yildiz B, Azarsiz E, Kutukculer N. New laboratory findings in Turkish patients with transient hypogammaglobulinemia of infancy. Iran J Allergy Asthma Immunol. 2010;9(4):237–43.PubMedPubMedCentralGoogle Scholar
  267. 267.
    Habahbeh ZM, Abu-Shukair ME, Almutereen MA, Alzyoud RM, Wahadneh AM. Primary antibody deficiencies at queen Rania children Hospital in Jordan: single center experience. Iran J Immunol. 2014;11(1):49–58.PubMedPubMedCentralGoogle Scholar
  268. 268.
    Keles S, Artac H, Kara R, Gokturk B, Ozen A, Reisli I. Transient hypogammaglobulinemia and unclassified hypogammaglobulinemia: ‘similarities and differences’. Pediatr Allergy Immunol. 2010;21(5):843–51.PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Kilic SS, Tezcan I, Sanal O, Metin A, Ersoy F. Transient hypogammaglobulinemia of infancy: clinical and immunologic features of 40 new cases. Pediatr Int. 2000;42(6):647–50.PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Cano F, Mayo DR, Ballow M. Absent specific viral antibodies in patients with transient hypogammaglobulinemia of infancy. J Allergy Clin Immunol. 1990;85(2):510–3.PubMedCrossRefPubMedCentralGoogle Scholar
  271. 271.
    Janssen WJ, Nierkens S, Sanders EA, Boes M, van Montfrans JM. Antigen-specific IgA titres after 23-valent pneumococcal vaccine indicate transient antibody deficiency disease in children. Vaccine. 2015;33(46):6320–6.PubMedCrossRefPubMedCentralGoogle Scholar
  272. 272.
    Kidon MI, Handzel ZT, Schwartz R, Altboum I, Stein M, Zan-Bar I. Symptomatic hypogammaglobulinemia in infancy and childhood – clinical outcome and in vitro immune responses. BMC Fam Pract. 2004;5(23):1471–2296.Google Scholar
  273. 273.
    Cotugno N, Manno EC, Stoppa F, Sinibaldi S, Saffirio C, D’Argenio P, et al. Severe parainfluenza pneumonia in a case of transient hypogammalobulinemia of infancy. BMJ Case Rep. 2013. pii: bcr2013009959.Google Scholar
  274. 274.
    Smart JM, Kemp AS, Armstrong DS. Pneumocystis carinii pneumonia in an infant with transient hypogammaglobulinaemia of infancy. Arch Dis Child. 2002;87(5):449–50.PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Walzer PD, Schultz MG, Western KA, Robbins JB. Pneumocystis carinii pneumonia and primary immune deficiency diseases of infancy and childhood. J Pediatr. 1973;82(3):416–22.PubMedCrossRefGoogle Scholar
  276. 276.
    Burke EC, Brown AL Jr, Weed LA. Pneumocystis carinii pneumonia: report of case in infant with hypogammaglo-bulinemia. Proc Staff Meet Mayo Clin. 1962;37:129–36.PubMedGoogle Scholar
  277. 277.
    Kramer RI, Cirone VC, Moore H. Interstitial pneumonia due to pneumocystis carinii, cytomegalic inclusion disease and hypogammaglobulinemia occurring simultaneously in an infant. Pediatrics. 1962;29:816–27.PubMedGoogle Scholar
  278. 278.
    Yazdani R, Azizi G, Abolhassani H, Aghamohammadi A. Selective IgA deficiency: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Scand J Immunol. 2017;85(1):3–12.PubMedCrossRefGoogle Scholar
  279. 279.
    Aldirmaz S, Yucel E, Kiykim A, Cokugras H, Akcakaya N, Camcioglu Y. Profile of the patients who present to immunology outpatient clinics because of frequent infections. Turk pediatri arsivi. 2014;49(3):210–6.PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Lozano NA, Lozano A, Sasia LV, Saranz RJ, Agresta MF, del Pilar Bovina Martijena M, et al. Clinical comparison between patients with selective immunoglobulin A deficiency and other primary immunodeficiencies. Arch Argent Pediatr. 2015;113(2):141–5.PubMedGoogle Scholar
  281. 281.
    Yel L. Selective IgA deficiency. J Clin Immunol. 2010;30(1):10–6.PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Karaca NE, Severcan EU, Guven B, Azarsiz E, Aksu G, Kutukculer N. TNFRSF13B/TACI alterations in Turkish patients with common variable immunodeficiency and IgA deficiency. Avicenna J Med Biotechnol. 2018;10(3):192–5.PubMedPubMedCentralGoogle Scholar
  283. 283.
    Santos-Valente E, Reisli I, Artac H, Ott R, Sanal O, Boztug K. A novel mutation in the complement component 3 gene in a patient with selective IgA deficiency. J Clin Immunol. 2013;33(1):127–33.PubMedCrossRefGoogle Scholar
  284. 284.
    Justiz Vaillant AAQA. Immunodeficiency. [Updated 2018 May 2]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2018.Google Scholar
  285. 285.
    Singh K, Chang C, Gershwin ME. IgA deficiency and autoimmunity. Autoimmun Rev. 2014;13(2):163–77.PubMedCrossRefPubMedCentralGoogle Scholar
  286. 286.
    Azizi G, Bagheri Y, Tavakol M, Askarimoghaddam F, Porrostami K, Rafiemanesh H, et al. The clinical and immunological features of patients with primary antibody deficiencies. Endocr Metab Immune Disord Drug Targets. 2018;18(5):537–45.PubMedCrossRefGoogle Scholar
  287. 287.
    Jorgensen GH, Gardulf A, Sigurdsson MI, Sigurdardottir ST, Thorsteinsdottir I, Gudmundsson S, et al. Clinical symptoms in adults with selective IgA deficiency: a case-control study. J Clin Immunol. 2013;33(4):742–7.PubMedCrossRefPubMedCentralGoogle Scholar
  288. 288.
    Kutukculer N, Karaca NE, Demircioglu O, Aksu G. Increases in serum immunoglobulins to age-related normal levels in children with IgA and/or IgG subclass deficiency. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2007;18(2):167–73.CrossRefGoogle Scholar
  289. 289.
    Hel Z, Huijbregts RP, Xu J, Nechvatalova J, Vlkova M, Litzman J. Altered serum cytokine signature in common variable immunodeficiency. J Clin Immunol. 2014;34(8):971–8.PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    Papadopoulou A, Mermiri D, Taousani S, Triga M, Nicolaidou P, Priftis KN. Bronchial hyper-responsiveness in selective IgA deficiency. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2005;16(6):495–500.CrossRefGoogle Scholar
  291. 291.
    Santaella ML, Peredo R, Disdier OM. IgA deficiency: clinical correlates with IgG subclass and mannan-binding lectin deficiencies. Puerto Rico Health Sci J. 2005;24(2):107–10.Google Scholar
  292. 292.
    Aghamohammadi A, Mohammadi J, Parvaneh N, Rezaei N, Moin M, Espanol T, et al. Progression of selective IgA deficiency to common variable immunodeficiency. Int Arch Allergy Immunol. 2008;147(2):87–92.PubMedCrossRefPubMedCentralGoogle Scholar
  293. 293.
    Aghamohammadi A, Abolhassani H, Biglari M, Abolmaali S, Moazzami K, Tabatabaeiyan M, et al. Analysis of switched memory B cells in patients with IgA deficiency. Int Arch Allergy Immunol. 2011;156(4):462–8.PubMedCrossRefPubMedCentralGoogle Scholar
  294. 294.
    Jindal AK, Rawat A, Suri D, Sharma M, Shandilya JK, Goel S, et al. Severe aspergillus pneumonia and pulmonary artery hypertension in a child with autosomal recessive chronic granulomatous disease and selective IgA deficiency. J Clin Immunol. 2017;37(4):333–5.PubMedCrossRefGoogle Scholar
  295. 295.
    Patiroglu T, Gungor HE, Lazaroski S, Unal E. Chronic granulomatous disease with markedly elevated IgE levels mimicking hyperimmunoglobulin E syndrome. Acta Microbiol Immunol Hung. 2013;60(2):155–62.PubMedCrossRefGoogle Scholar
  296. 296.
    Shamsian BS, Mansouri D, Pourpak Z, Rezaei N, Chavoshzadeh Z, Jadali F, et al. Autosomal recessive chronic granulomatous disease, IgA deficiency and refractory autoimmune thrombocytopenia responding to anti-CD20 monoclonal antibody. Iran J Allergy Asthma Immunol. 2008;7(3):181–4.PubMedGoogle Scholar
  297. 297.
    Ragesh R, Ray A, Mian A, Vyas S, Sharma SK. Cavitary lung lesions in a difficult-to-treat asthma patient. J Assoc Physicians India. 2016;64(4):73–6.PubMedGoogle Scholar
  298. 298.
    Dincer HE, Dunitz JM. Tracheobronchopathia osteochondroplastica and selective IgA deficiency. J Bronchol Interv Pulmonol. 2012;19(1):54–6.CrossRefGoogle Scholar
  299. 299.
    Rohr A, Ash R, Vadaparampil J, Hill J, Wetzel L. Disseminated cat-scratch disease in an adult with selective IgA deficiency. Radiol Case Rep. 2016;11(2):54–7.PubMedPubMedCentralCrossRefGoogle Scholar
  300. 300.
    Stewart DR, Givens SS, Harris AK, Williams GM, Messinger YH, Schultz KA, et al. Comment on: DICER1-negative pleuropulmonary blastoma in a patient with selective IgA deficiency. Pediatr Blood Cancer. 2016;63(10):1869–70.PubMedCrossRefPubMedCentralGoogle Scholar
  301. 301.
    Chen Y, Jin M, Zhao W, Li S, Wang X, Cai S, et al. DICER1-negative pleuropulmonary blastoma in a patient with selective IgA deficiency. Pediatr Blood Cancer. 2016;63(4):757–8.PubMedCrossRefPubMedCentralGoogle Scholar
  302. 302.
    Takahashi N, Kondo T, Fukuta M, Takemoto A, Takami Y, Sato M, et al. Selective IgA deficiency mimicking Churg-Strauss syndrome and hypereosinophilic syndrome: a case report. Nagoya J Med Sci. 2013;75(1–2):139–46.PubMedPubMedCentralGoogle Scholar
  303. 303.
    Hage JE, Wu J, Cunha BA. Cryptococcal pneumonia in a patient with presumptive sarcoidosis and selective immunoglobulin a deficiency. Heart Lung J Crit Care. 2012;41(4):398–400.CrossRefGoogle Scholar
  304. 304.
    Erkocoglu M, Civelek E, Kocabas CN. Unusual presentation: concurrent IgA deficiency and idiopathic pulmonary hemosiderosis. Pediatr Pulmonol. 2016;51(10):E34–e6.PubMedCrossRefGoogle Scholar
  305. 305.
    Dominguez O, Giner MT, Alsina L, Martin MA, Lozano J, Plaza AM. Clinical phenotypes associated with selective IgA deficiency: a review of 330 cases and a proposed follow-up protocol. An Pediatr (Barcelona, Spain: 2003). 2012;76(5):261–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Center for ImmunodeficienciesChildren’s Medical Center, Tehran University of Medical Sciences (TUMS)TehranIran
  2. 2.Systematic Review and Meta-analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran
  3. 3.Department of Immunology, School of MedicineTehran University of Medical Sciences (TUMS)TehranIran
  4. 4.Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN)TehranIran

Personalised recommendations