Pulmonary Manifestations of Combined T- and B-Cell Immunodeficiencies

  • Andrew R. Gennery


The immune system has evolved in coexistence with microbes over billions of years with the purpose of providing efficient but self-limited host defense against the biotic and abiotic environment, during which self-tolerance is maintained. The three key components of human immune defense are (i) barriers, (ii) innate immune response, and (iii) adaptive immune response. The key elements of the adaptive response are T-lymphocytes and B-lymphocytes, and defects in T-lymphocytes alone or both T- and B-lymphocytes give rise to combined immunodeficiency. Because the lung is a major interface between the internal and external environment, so pulmonary infection is a frequent consequence of combined immunodeficiency, but other pulmonary manifestations are also recognized. This chapter will concentrate on clinical patterns of presentation, as well as describe specific diseases in detail. Specific respiratory syndromes associated with specific diseases will be highlighted.


Primary immunodeficiency diseases Severe combined immunodeficiency Severe combined immunodeficiency due to adenosine deaminase deficiency Combined immunodeficiency Reticular dysgenesis X-linked combined immunodeficiency diseases Pulmonary disease 


  1. 1.
    Fischer A, Notarangelo LD, Neven B, Cavazzana M, Puck JM. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers. 2015;1:15061.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Picard C, Bobby Gaspar H, Al-Herz W, et al. International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018;38:96–128.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Berrington JE, Flood TJ, Abinun M, Galloway A, Cant AJ. Unsuspected Pneumocystis carinii pneumonia at presentation of severe primary immunodeficiency. Arch Dis Child. 2000;82:144–7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    van der Burg M, Gennery AR. The expanding clinical and immunological spectrum of SCID. Eur J Pediatr. 2011;170:561–71.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Marciano BE, Huang CY, Joshi G, et al. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J Allergy Clin Immunol. 2014;133:1134–41.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gaspar HB. Bone marrow transplantation and alternatives for adenosine deaminase deficiency. Immunol Allergy Clin N Am. 2010;30:221–36.CrossRefGoogle Scholar
  7. 7.
    Rogers MH, Lwin R, Fairbanks L, Gerritsen B, Gaspar HB. Cognitive and behavioral abnormalities in adenosine deaminase deficient severe combined immunodeficiency. J Pediatr. 2001;139:44–50.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Albuquerque W, Gaspar HB. Bilateral sensorineural deafness in adenosine deaminase-deficient severe combined immunodeficiency. J Pediatr. 2004;144:278–80.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Manson D, Diamond L, Oudjhane K, Hussain FB, Roifman C, Grunebaum E. Characteristic scapular and rib changes on chest radiographs of children with ADA-deficiency SCIDS in the first year of life. Pediatr Radiol. 2013;43(5):589–92.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Sauer AV, Mrak E, Hernandez RJ, et al. ADA-deficient SCID is associated with a specific microenvironment and bone phenotype characterized by RANKL/OPG imbalance and osteoblast insufficiency. Blood. 2009;114(15):3216–26.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Blackburn MR, Kellems RE. Adenosine deaminase deficiency: metabolic basis of immune deficiency and pulmonary inflammation. Adv Immunol. 2005;86:1–41.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Chunn JL, Molina JG, Mi T, et al. Adenosine- dependent pulmonary fibrosis in adenosine deaminase-deficient mice. J Immunol. 2005;175:1937–46.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Booth C, Algar VE, Xu-Bayford J, et al. Non- infectious lung disease in patients with adenosine deaminase deficient severe combined immunodeficiency. J Clin Immunol. 2012;32:449–53.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Grunebaum E, Cutz E, Roifman CM. Pulmonary alveolar proteinosis in patients with adenosine deaminase deficiency. J Allergy Clin Immunol. 2012;129:1588–93.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hoenig M, Lagresle-Peyrou C, Pannicke U, EBMT Inborn Errors Working Party, et al. Reticular dysgenesis: international survey on clinical presentation, transplantation and outcome. Blood. 2017;129:2928–38.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Omenn GS. Familial reticuloendotheliosis with eosinophilia. N Engl J Med. 1965;273:427–32.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Rieux-Laucat F, Bahadoran P, Brousse N, et al. Highly restricted human T cell repertoire in peripheral blood and tissue-infiltrating lymphocytes in Omenn’s syndrome. J Clin Invest. 1998;102:312–21.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Harville TO, Adams DM, Howard TA, et al. Oligoclonal expansion of CD45RO+ T lymphocytes in Omenn syndrome. J Clin Immunol. 1997;17:322–32.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    de Saint-Basile G, Le Deist F, de Villartay JP, et al. Restricted heterogeneity of T lymphocytes in combined immunodeficiency with hyper- eosinophilia (Omenn’s syndrome). J Clin Invest. 1991;87:1352–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Altmann T, Slack J, Slatter MA, et al. Endothelial cell damage in idiopathic pneumonia syndrome following hematopoietic stem cell transplantation. Bone Marrow Transplant. 2018;53:515–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wahn V, Yokota S, Meyer KL, et al. Expansion of a maternally derived monoclonal T cell population with CD3+/CD8+/T cell receptor-gamma/delta+ phenotype in a child with severe combined immunodeficiency. J Immunol. 1991;147:2934–41.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Sebnem Kilic S, Kavurt S, Balaban AS. Transfusion-associated graft-versus-host disease in severe combined immunodeficiency. J Investig Allergol Clin Immunol. 2010;20:153–6.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Felgentreff K, Perez-Becker R, Speckmann C, et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin Immunol. 2011;141:73–82.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bode SFN, Ammann S, Al-Herz W, Inborn Errors Working Party of the EBMT, et al. The syndrome of hemophagocytic lymphohistiocytosis in primary immunodeficiencies: implications for differential diagnosis and pathogenesis. Haematologica. 2015;100:978–88.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Slatter MA, Angus B, Windebank K, et al. Polymorphous lymphoproliferative disorder with Hodgkin like features in common gamma chain deficient severe combined immunodeficiency. J Allergy Clin Immunol. 2011;127:533–5.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Slatter MA, Rogerson EJ, Taylor CE, et al. Value of Bronchoalveolar lavage prior to Haematopoietic stem cell transplantation for primary immunodeficiency. Bone Marrow Transplant. 2007;40:529–33.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hughes WT. Pneumocystis carinii pneumonia: new approaches to diagnosis, treatment and prevention. Pediatr Infect Dis J. 1991;10:391–9.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Vachon ML, Dionne N, Leblanc E, et al. Human parainfluenza type 4 infections, Canada. Emerg Infect Dis. 2006;12:1755–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Crooks BN, Taylor CE, Turner AJ, et al. Respiratory viral infections in primary immune deficiencies: significance and relevance to clinical outcome in a single BMT unit. Bone Marrow Transplant. 2000;26:1097–102.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Thea DM, Lambert G, Weedon J, et al. Benefit of primary prophylaxis before 18 months of age in reducing the incidence of Pneumocystis carinii pneumonia and early death in a cohort of 112 human immunodeficiency virus-infected infants. New York City Perinatal HIV Transmission Collaborative Study Group. Pediatrics. 1996;97:59–64.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: Recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. Available at
  32. 32.
    Keller MD, Nicholas S, Leen A, et al. Adoptive Immunotherapy for Primary Immunodeficiency Disorders with Virus-Specific Cytotoxic T-lymphocytes. J Allergy Clin Immunol. 2016;137:1498–1505.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Boeckh M, Berrey MM, Bowden RA, et al. Phase 1 evaluation of the respiratory syncytial virus-specific monoclonal antibody palivizumab in recipients of hematopoietic stem cell transplants. J Infect Dis. 2001;184:350–4.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Chávez-Bueno S, Mejías A, Merryman RA, et al. Intravenous palivizumab and ribavirin combination for respiratory syncytial virus disease in high-risk pediatric patients. Pediatr Infect Dis J. 2007;26:1089–93.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Gennery AR, Slatter MA, Grandin L, et al. Transplantation of Haematopoietic Stem Cells and Long Term Survival for Primary Immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010;126:602–10. e1–11PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Pai S-Y, Logan BR, Griffith LM, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371:434–46.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Brown L, Xu-Bayford J, Allwood Z, et al. Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: the case for newborn screening. Blood. 2011;117:3243–6.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kwan A, Abraham RS, Currier R, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312:729–38.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Picard C, Bobby Gaspar H, Al-Herz W, et al. International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018;38:96–128.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Durandy A, Kracker S, Fischer A. Primary antibody deficiencies. Nat Rev Immunol. 2013;13:519–33.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Levy J, Espanol-Boren T, Thomas C, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr. 1997;131:47–54.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hayward AR, Levy J, Facchetti F, Notarangelo L, et al. Cholangiopathy and tumors of the pancreas, liver, and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J Immunol. 1997;158:977–83.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Cunningham CK, Bonville CA, Ochs HD, et al. Enteroviral meningoencephalitis as a complication of X-linked hyper IgM syndrome. J Pediatr. 1999;3:584–8.CrossRefGoogle Scholar
  44. 44.
    Aschermann Z, Gomori E, Kovacs GG, et al. X-linked hyper-IgM syndrome associated with a rapid course of multifocal leukoencephalopathy. Arch Neurol. 2007;64:273–6.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Toniati P, Savoldi G, Davies G, et al. Report of the ESID collaborative study on clinical features and molecular analysis in X-LINKED HYPER-IgM syndrome. Clin Exp Immunol. 2008;154(S1):121.Google Scholar
  46. 46.
    de la Morena MT, Leonard D, Torgerson T, et al. Long term outcomes of 176 patients with X-linked hyper IgM syndrome. J Allergy Clin Immunol. 2016;139:1282–92.Google Scholar
  47. 47.
    Gennery AR, Khawaja K, Veys P, et al. Treatment of CD40 ligand deficiency by hematopoietic stem cell transplantation: a survey of the European experience, 1993-2002. Blood. 2004;103:1152–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ferrua F, Galimberti S, Courteille V, et al. Hematopoietic stem cell transplantation for CD40 ligand deficiency: results from an EBMT/ESID-IEWP-SCETIDE-PIDTC Study. J Allergy Clin Immunol. 2018.; (in press).Google Scholar
  49. 49.
    Quarello P, Tandoi F, Carraro F, et al. Successful sequential liver and hematopoietic stem cell transplantation in a child with CD40 ligand deficiency and Cryptosporidium-induced liver cirrhosis. Transplantation. 2018;102:823–8.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ferrari S, Giliani S, Insalaco A, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98:12614–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lougaris V, Badolato R, Ferrari S, Plebani A. Hyper immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and immunological features. Immunol Rev. 2005;203:48–66.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kutukculer N, Moratto D, Aydinok Y, et al. Disseminated cryptosporidium infection in an infant with hyper-IgM syndrome caused by CD40 deficiency. J Pediatr. 2003;142:194–6.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Al-Saud B, Al-Jomaie M, Al-Ghonaium A, et al. Haematopoietic stem cell transplant for hyper-IgM syndrome due to CD40 defects: a single-centre experience. Bone Marrow Transplant. 2018.; (in press).Google Scholar
  54. 54.
    John LB, Ward AC. The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity. Mol Immunol. 2011;48:1272–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Goldman FD, Gurel Z, Al-Zubeidi D, et al. Congenital pancytopenia and absence of B lymphocytes in a neonate with a mutation in the Ikaros gene. Pediatr Blood Cancer. 2012;58:591–7.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kuehn HS, Boisson B, Cunningham-Rundles C, et al. Loss of B cells in patients with heterozygous mutations in IKAROS. N Engl J Med. 2016;374:1032–43.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bogaert DJ, et al. A novel IKAROS haploinsufficiency kindred with unexpectedly late and variable B-cell maturation defects. J. Allergy Clin Immunol. 2017;141:432–435.e7.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hoshino A, Okada S, Yoshida K, et al. Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J Allergy Clin Immunol. 2016;140:223–31.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Cytlak U, Resteu A, Altmann T, et al. Dendritic cell and monocyte anomalies in human IKZF1 haploinsufficiency. Nat Commun. 2018;9:1239.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zhang Q, Davis JC, Lamborn IT, et al. Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med. 2009;361:2046–55.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Engelhardt KR, McGhee S, Winkler S, et al. Large deletions and point mutations involving DOCK8 in the autosomal recessive form of the hyper-IgE syndrome. J Allergy Clin Immunol. 2009;124:1289–130.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Engelhardt KR, Gertz EM, Keles S, et al. The extended clinical phenotype of 58 patients with DOCK8 deficiency. J Allergy Clin Immunol. 2015;136:402–12.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Aydin SE, Kilic SS, Aytekin C, inborn errors working party of EBMT, et al. DOCK8 deficiency: clinical and immunological phenotype and treatment options. J Clin Immunol. 2015;35:189–98.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Su HC, Jing H, Zhang Q. DOCK8 deficiency. Ann N Y Acad Sci. 2011;1246:26–33.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Dasouki M, Okonkwo KC, Ray A, et al. Deficient T cell receptor excision circles (TRECs) in autosomal recessive hyper IgE syndrome caused by DOCK8 mutation: implications for pathogenesis and potential detection by newborn screening. Clin Immunol. 2011;141:128–32.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Aydin SE, Freeman AF, Al-Herz W, inborn errors working party of the European Group for Blood and Marrow Transplantation (EBMT) and the European Society for Primary Immunodeficiencies (ESID), et al. Hematopoietic stem cell transplantation as treatment for patients with DOCK8 deficiency. Blood Adv. 2018. (in press).Google Scholar
  67. 67.
    Happel CS, Stone KD, Freeman AF, et al. Food allergies can persist after myeloablative hematopoietic stem cell transplantation in dedicator of cytokinesis 8-deficient patients. J Allergy Clin Immunol. 2016;137:1895–1898.e5.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Al-Herz W, Alsmadi O, Melhem M, et al. Major histocompatibility complex class II deficiency in Kuwait: clinical manifestations, immunological findings and molecular profile. J Clin Immunol. 2013;33:513–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ben-Mustapha I, Ben-Farhat K, Guirat-Dhouib N, et al. Clinical, immunological and genetic findings of a large tunisian series of major histocompatibility complex class II deficiency patients. J Clin Immunol. 2013;33:865–70.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Ouederni M, Vincent QB, Frange P, et al. Major histocompatibility complex class II expression deficiency caused by a RFXANK founder mutation: a survey of 35 patients. Blood. 2011;118:5108–18.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Renella R, Picard C, Neven B, et al. Human leukocyte antigen identical hematopoietic stem cell transplantation in major histocompatibility complex class II immunodeficiency: reduce survival correlated with an increase incidence of acute graft versus host disease and pre-existing viral infections. Br J Hematol. 2006;134:510–6.CrossRefGoogle Scholar
  72. 72.
    Elfeky R, Furtado-Silva JM, Chiesa R, et al. Umbilical cord blood transplantation without in vivo T-cell depletion for children with MHC class II deficiency. J Allergy Clin Immunol. 2018;141:2279–2282.e2.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    de la Salle H, Donato L, Hanau D. Peptide transporter defects in human leukocyte antigen class I deficiency. In: Ochs H, Smith E, Puck J, editors. Primary immunodeficiency diseases. A molecular and genetic approach. New York: Oxford University Press; 2014. p. 258–68.Google Scholar
  74. 74.
    Gadola SD, Moins-Teisserenc HT, Trowsdale J, et al. TAP deficiency syndrome. Clin Exp Immunol. 2000;121:173–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Palamaro L, Romano R, Fusco A, et al. FOXN1 in organ development and human diseases. Int Rev Immunol. 2014;33:83–93.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Nowell CS, Bredenkamp N, Tetélin S, et al. Foxn1 regulates lineage progression in cortical and medullary Thymic epithelial cells but is dispensable for medullary sublineage divergence. PLoS Genet. 2011;7:e1002348.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Pignata C, Fusco A, Amorosi S. Human clinical phenotype associated with FOXN1 mutations. Adv Exp Med Biol. 2009;665:195–206.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Albuquerque AS, Marques JG, Silva SL, et al. Human FOXN1-deficiency is associated with alphabeta double-negative and FoxP3+ T-cell expansions that are distinctly modulated upon thymic transplantation. PLoS One. 2012;7:e37042.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Markert ML, Marques JG, Neven B, Devlin BH, McCarthy EA, Chinn IK, et al. First use of thymus transplantation therapy for FOXN1 deficiency (nude/SCID): a report of 2 cases. Blood. 2011;117:688–96.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Chou J, Massaad MJ, Wakim RH, et al. A novel mutation in FOXN1 resulting in SCID: a case report and literature review. Clin Immunol. 2014;155:30–2.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Pignata C, Fiore M, Guzzetta V, et al. Congenital alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs. Am J Med Genet. 1996;65:167–70.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Lugli N, Sotiriou SK, Halazonetis TD. The role of SMARCAL1 in replication fork stability and telomere maintenance. DNA Repair (Amst). 2017;56:129–34.CrossRefGoogle Scholar
  83. 83.
    Kaitila I, Savilahti E, Ormälä T. Autoimmune enteropathy in Schimke immunoosseous dysplasia. Am J Med Genet. 1998;77:427–30.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Morimoto M, Lewis DB, Lücke T, et al. Schimke Immunoosseous Dysplasia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A, editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993-2018.Google Scholar
  85. 85.
    Boerkoel CF, Takashima H, John J, et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat Genet. 2002;30:215–20.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Ridanpää M, van Eenennaam H, Pelin K, et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell. 2001;104:195–203.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Makitie O, Marttinen E, Kaitila I. Skeletal growth in cartilage-hair hypoplasia. A radiological study of 82 patients. Pediatr Radiol. 1992;22:434–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Rider NL, Morton DH, Puffenberger E, et al. Immunologic and clinical features of 25 Amish patients with RMRP 70A-G cartilage-hair hypoplasia. Clin Immunol. 2009;131:119–28.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Kavadas FD, Giliani S, Gu Y, et al. Variability of clinical and laboratory features among patients with ribonuclease mitochondrial RNA processing endoribonuclease gene mutations. J Allergy Clin Immunol. 2008;122:1178–84.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Makitie O, Kaitila I. Cartilage-hair hypoplasia - clinical manifestations in 108 Finnish patients. Eur J Pediatr. 1993;152:211–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    McCann LJ, McPartland J, Barge D, et al. Phenotypic variations of cartilage hair hypoplasia: granulomatous skin inflammation and severe T cell immunodeficiency as initial clinical presentation in otherwise well child with short stature. J Clin Immunol. 2014;34:42–8.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Mäkitie O, Vakkilainen S. Cartilage-hair hypoplasia_anauxetic dysplasia spectrum disorders. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews. Seattle, WA: University of Washington; 2018.Google Scholar
  93. 93.
    Toiviainen-Salo S, Kajosaari M, Piilonen A, et al. Patients with cartilage-hair hypoplasia have an increased risk for bronchiectasis. J Pediatr. 2008;152:422–8.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Roifman CM, Gu Y, Cohen A. Mutations in the RNA component of RNase mitochondrial RNA processing might cause Omenn syndrome. J Allergy Clin Immunol. 2006;117:897–903.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Ip W, Gaspar H, Kleta R, et al. Variable phenotype of severe immunodeficiencies associated with RMRP gene mutations. J Clin Immunol. 2015;35:147–57.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Makitie O, Pukkala E, Teppo L, et al. Increased incidence of cancer in patients with cartilage-hair hypoplasia. J Pediatr. 1999;134:315–8.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Bordon V, Gennery AR, Slatter MA, et al. Clinical and immunologic outcome of patients with cartilage hair hypoplasia after hematopoietic stem cell transplantation. Blood. 2010;116:27–35.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Merico D, Roifman M, Braunschweig U, et al. Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman syndrome by disrupting minor intron splicing. Nat Commun. 2015;6:8718.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Dinur Schejter Y, Ovadia A, Alexandrova R, et al. A homozygous mutation in the stem II domain of RNU4ATAC causes typical Roifman syndrome. NPJ Genom Med. 2017;2:23.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Roifman CM. Antibody deficiency, growth retardation, spondyloepiphyseal dysplasia and retinal dystrophy: a novel syndrome. Clin Genet. 1999;55:103–099.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Heremans J, Garcie-Perez JE, Turro E, et al. Abnormal differentiation of B cells and megakaryocytes in patients with Roifman syndrome. J Allergy Clin Immunol. 2018. (in press;142:630–46.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Briggs TA, Rice GI, Adib N, et al. Spondyloenchondrodysplasia due to mutations in ACP5: a comprehensive survey. J Clin Immun. 2016;36:220–34.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Renella R, Schaefer E, LeMerrer M, et al. Spondyloenchondrodysplasia with spasticity, cerebral calcifications, and immune dysregulation: clinical and radiologic delineation of a pleiotropic disorder. Am J Med Genet. 2006;140A:541–50.CrossRefGoogle Scholar
  104. 104.
    Roifman CM, Melamed I. A novel syndrome of combined immunodeficiency, autoimmunity and spondylometaphyseal dysplasia. Clin Genet. 2003;63:522–9.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Alsultan A, Shamseldin HE, Osman ME, et al. MYSM1 is mutated in a family with transient transfusion-dependent anemia, mild thrombocytopenia, and low NK- and B-cell counts. Blood. 2013;122:3844–5.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Le Guen T, Touzot F, André-Schmutz I, et al. An in vivo genetic reversion highlights the crucial role of Myb-like, SWIRM, and MPN domains 1 (MYSM1) in human hematopoiesis and lymphocyte differentiation. J Allergy Clin Immunol. 2015;136:1619–26. e5PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Volpi S, Yamazaki Y, Brauer PM, et al. EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay. J Exp Med. 2017;214:623–37.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Guo L, Elcioglu NH, Mizumoto S, et al. Identification of biallelic EXTL3 mutations in a novel type of spondylo-epi-metaphyseal dysplasia. J Hum Genet. 2017;62:797–801.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Oud MM, Tuijnenburg P, Hempel M, et al. Mutations in EXTL3 cause neuro-immuno-skeletal dysplasia syndrome. Am J Hum Genet. 2017;100:281–96.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Samuels ME, Majewski J, Alirezaie N, et al. Exome sequencing identifies mutations in the gene TTC7A in French-Canadian cases with hereditary multiple intestinal atresia. J Med Genet. 2013;50:324–9.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Bigorgne AE, Farin HF, Lemoine R, et al. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J Clin Invest. 2014;124:328–37.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Chen R, Giliani S, Lanzi G, et al. Whole-exome sequencing identifies tetratricopeptide repeat domain 7A (TTC7A) mutations for combined immunodeficiency with intestinal atresias. J Allergy Clin Immunol. 2013;132:656–664.e17.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lemoine R, Pachlopnik-Schmid J, Farin HF, et al. Immune deficiency-related enteropathy-lymphocytopenia-alopecia syndrome results from tetratricopeptide repeat domain 7A deficiency. J Allergy Clin Immunol. 2014;134:1354–1364.e6.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Kammermeier J, Lucchini G, Pai SY, et al. Stem cell transplantation for tetratricopeptide repeat domain 7A deficiency: long-term follow-up. Blood. 2016;128:1306–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Kaur M, Singh M, Silakari O. Insight into the therapeutic aspects of ‘zeta-chain associated protein kinase 70 kDa’ inhibitors: a review. Cell Signal. 2014;26:2481–92.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Elder ME, Lin D, Clever J, et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science. 1994;264:1596–9.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Turul T, Tezcan I, Artac H, et al. Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency. Eur J Pediatr. 2009;168:87–93.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Picard C, Dogniaux S, Chemin K, et al. Hypomorphic mutation of ZAP70 in human results in a late onset immunodeficiency and no autoimmunity. Eur J Immunol. 2009;39:1966–76.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Chan AY, Punwani D, Kadlecek TA, et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med. 2016;213:155–65.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Roifman CM, Dadi H, Somech R, et al. Characterization of zeta-associated protein, 70 kd (ZAP70)-defi- cient human lymphocytes. J Allergy Clin Immunol. 2010;126:1226–1233.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Cuvelier GD, Rubin TS, Wall DA, et al. Long-term outcomes of hematopoietic stem cell transplantation for ZAP70 deficiency. J Clin Immunol. 2016;36:713–24.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    de la Calle-Martin O, Hernandez M, Ordi J, et al. Familial CD8 deficiency due to a mutation in the CD8 alpha gene. J Clin Invest. 2001;108:117–23.Google Scholar
  123. 123.
    Mancebo E, Moreno-Pelayo MA, Mencía A, et al. Gly111Ser mutation in CD8A gene causing CD8 immunodeficiency is found in Spanish gypsies. Mol Immunol. 2008;45:479–84.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Dumontet E, Osman J, Guillemont-Lambert N, et al. Recurrent respiratory infections revealing CD8α deficiency. J Clin Immunol. 2015;35:692–5.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Smith DK, Neal JJ, Holmberg SD. Unexplained opportunistic infections and CD4+ T-lymphocytopenia without HIV infection. An investigation of cases in the United States. The centers for disease control idiopathic CD4 1 T-lymphocytopenia task force. N Engl J Med. 1993;328:373–9.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Spira TJ, Jones BM, Nicholson JK, et al. Idiopathic CD4+ T-lymphocytopenia _ an analysis of five patients with unexplained opportunistic infections. N Engl J Med. 1993;328:386–92.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Busch MP, Valinsky JE, Paglieroni T, et al. Screening of blood donors for idiopathic CD4+ T-lymphocytopenia. Transfusion. 1994;34:192–7.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Kuijpers TW, Ijspeert H, van Leeuwen EM, et al. Idiopathic CD4+ T lymphopenia without autoimmunity or granulomatous disease in the slipstream of RAG mutations. Blood. 2011;117:5892–6.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Albin-Leeds S, Ochoa J, Mehta H, et al. Idiopathic T cell lymphopenia identified in New York state new- born screening. Clin Immunol. 2017;183:36–40.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Jyonouchi S, Jongco AM, Puck J, et al. Immunodeficiencies associated with abnormal newborn screening for T cell and B cell lymphopenia. J Clin Immunol. 2017;37:363–74.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Thakar MS, Hintermeyer MK, Gries MG, et al. A practical approach to newborn screening for severe combined immunodeficiency using the T cell receptor excision circle assay. Front Immunol. 2017;8:1470.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Gorska MM, Alam R. A mutation in the human uncoordinated 119 gene impairs TCR signaling and is associated with CD4 lymphopenia. Blood. 2012;119:1399–406.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Gorska MM, Alam R. Consequences of a mutation in the UNC119 gene for T cell function in idiopathic CD4 lymphopenia. Curr Allergy Asthma Rep. 2012;12:396–401.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Hauck F, Randriamampita C, Martin E, et al. Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol. 2012;130:1144–1152.e11.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Bader-Meunier B, Rieux-Laucat F, Touzot F, et al. Inherited immunodeficiency: a new association with early-onset childhood panniculitis. Pediatrics. 2018;141(Suppl 5):S496–500.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Sawabe T, Horiuchi T, Nakamura M, et al. Defect of lck in a patient with common variable immunodeficiency. Int J Mol Med. 2001;7:609–14.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Goldman FD, Ballas ZK, Schutte BC, et al. Defective expression of p56lck in an infant with severe combined immunodeficiency. J Clin Invest. 1998;102:421–9.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Salzer E, Cagdas D, Hons M, et al. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol. 2016;17:1352–60.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Platt CD, Fried AJ, Hoyos-Bachiloglu R, et al. Combined immunodeficiency with EBV positive B cell lymphoma and epidermodysplasia verruciformis due to a novel homozygous mutation in RASGRP1. Clin Immunol. 2017;183:142–4.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Mao H, Yang W, Latour S, et al. RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease. J Allergy Clin Immunol. 2018;142:595–604.e16.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Winter S, Martin E, Boutboul D, et al. Loss of RASGRP1 in humans impairs T-cell expansion leading to Epstein-Barr virus susceptibility. EMBO Mol Med. 2018;10:188–99.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Somekh I, Marquardt B, Liu Y, et al. Novel mutations in RASGRP1 are associated with immunodeficiency, immune dysregulation, and EBV-induced lymphoma. J Clin Immunol. 2018;38:699–710.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Ghosh S, Drexler I, Bhatia S, et al. Interleukin 2 inducible T-cell kinase deficiency – new patients, new insight? Front Immunol. 2018;9:979.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Cagdas D, Erman B, Hanoglu D, et al. Course of IL-2-inducible T-cell kinase deficiency in a family: lymphomatoid granulomatosis, lymphoma and allogeneic bone marrow transplantation in one sibling; and death in the other. Bone Marrow Transplant. 2017;52:126–9.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Cipe FE, Aydogmus C, Serwas NK, et al. ITK deficiency: how can EBV be treated before lymphoma? Pediatr Blood Cancer. 2015;62:2247–8.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Alme C, Satwani P, Alobeid B, et al. Atypical clinical course in pediatric Hodgkin lymphoma: association with germline mutations in interleukin-2-inducible T-cell kinase. J Pediatr Hematol Oncol. 2015;37:507–8.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Bienemann K, Borkhardt A, Klapper W, et al. High incidence of Epstein- Barr virus (EBV)-positive Hodgkin lymphoma and Hodgkin lymphoma-like B-cell lymphoproliferations with EBV latency profile 2 in children with interleukin-2-inducible T-cell kinase deficiency. Histopathology. 2015;67:607–16.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Serwas NK, Cagdas D, Ban SA, et al. Identification of ITK deficiency as a novel genetic cause of idiopathic CD4+ T-cell lymphopenia. Blood. 2014;124:655–7.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Ghosh S, Bienemann K, Boztug K, et al. Interleukin-2-inducible T-cell kinase (ITK) deficiency – clinical and molecular aspects. J Clin Immunol. 2014;34:892–9.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Mansouri D, Mahdaviani SA, Khalilzadeh S, et al. IL-2-inducible T-cell kinase deficiency with pulmonary manifestations due to disseminated Epstein-Barr virus infection. Int Arch Allergy Immunol. 2012;158:418–22.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Linka RM, Risse SL, Bienemann K, et al. Loss- of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia. 2012;26:963–71.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Stepensky P, Weintraub M, Yanir A, et al. IL-2-inducible T-cell kinase deficiency: clinical presentation and therapeutic approach. Haematologica. 2011;96:472–6.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Huck K, Feyen O, Niehues T, et al. Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest. 2009;119:1350–8.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Li FY, Chaigne-Delalande B, Kanellopoulou C, et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature. 2011;475:471–6.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Chaigne-Delalande B, Li FY, O'Connor GM, et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science. 2013;341:186–91.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Morgan NV, Goddard S, Cardno TS, et al. Mutation in the TCRα subunit constant gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of TCRαβ+ T cells. J Clin Invest. 2011;121:695–702.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Chou J, Badran YR, Yee CSK, et al. A novel mutation in ORAI1 presenting with combined immunodeficiency and residual T-cell function. J Allergy Clin Immunol. 2015;136:479–482.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Maul-Pavicic A, Chiang SC, Rensing-Ehl A, et al. ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. Proc Natl Acad Sci U S A. 2011;108:3324–9.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    McCarl CA, Picard C, Khalil S, et al. ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol. 2009;124:1311–1318.e7.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Feske S, Gwack Y, Prakriya M, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441:179–85.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Schaballie H, Rodriguez R, Martin E, et al. A novel hypomorphic mutation in STIM1 results in a late-onset immunodeficiency. J Allergy Clin Immunol. 2015;136:816–819.e4.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Fuchs S, Rensing-Ehl A, Speckmann C, et al. Antiviral and regulatory T cell immunity in a patient with stromal interaction molecule 1 deficiency. J Immunol. 2012;188:1523–33.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Byun M, Abhyankar A, Lelarge V, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med. 2010;207:2307–12.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Picard C, McCarl CA, Papolos A, et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med. 2009;360:1971–80.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Sherkat R, Sabri MR, Dehghan B, et al. EBV lymphoproliferative-associated disease and primary cardiac T-cell lymphoma in a STK4 deficient patient: a case report. Medicine (Baltimore). 2017;96:e8852.CrossRefGoogle Scholar
  166. 166.
    Dang TS, Willet JD, Griffin HR, et al. Defective leukocyte adhesion and chemotaxis contributes to combined immunodeficiency in humans with autosomal recessive MST1 deficiency. J Clin Immunol. 2016;36:117–22.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Crequer A, Picard C, Patin E, et al. Inherited MST1 deficiency underlies susceptibility to EV-HPV infections. PLoS One. 2012;7:e44010.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Abdollahpour H, Appaswamy G, Kotlarz D, et al. The phenotype of human STK4 deficiency. Blood. 2012;119:3450–7.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Nehme NT, Schmid JP, Debeurme F, et al. MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood. 2012;119:3458–68.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Charbit-Henrion F, Jeverica AK, Bègue B, et al. GENIUS group. Deficiency in mucosa-associated lymphoid tissue lymphoma translocation 1: a novel cause of IPEX-like syndrome. J Pediatr Gastroenterol Nutr. 2017;64:378–84.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Rozmus J, McDonald R, Fung SY, et al. Successful clinical treatment and functional immunological normalization of human MALT1 deficiency following hematopoietic stem cell transplantation. Clin Immunol. 2016;168:1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Punwani D, Wang H, Chan AY, et al. Combined immunodeficiency due to MALT1 mutations, treated by hematopoietic cell transplantation. J Clin Immunol. 2015;35:135–46.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Torres JM, Martinez-Barricarte R, García-Gómez S, et al. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J Clin Invest. 2014;124:5239–48.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Pérez de Diego R, Sánchez-Ramón S, López-Collazo E, et al. Genetic errors of the human caspase recruitment domain-B-cell lymphoma 10-mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: molecular, immunologic, and clinical heterogeneity. J Allergy Clin Immunol. 2015;136:1139–49.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Turvey SE, Durandy A, Fischer A, et al. The CARD11-BCL10-MALT1 (CBM) signalosome complex: stepping into the limelight of human primary immunodeficiency. J Allergy Clin Immunol. 2014;134:276–84.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Jabara HH, Ohsumi T, Chou J, et al. A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. J Allergy Clin Immunol. 2013;132:151–8.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    McKinnon ML, Rozmus J, Fung SY, et al. Combined immunodeficiency associated with homozygous MALT1 mutations. J Allergy Clin Immunol. 2014;133:1458–62. e1-7PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Stepensky P, Keller B, Buchta M, et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol. 2013;131:477–845. e1PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Greil J, Rausch T, Giese T, et al. Whole-exome sequencing links caspase recruitment domain 11 (CARD11) inactivation to severe combined immunodeficiency. J Allergy Clin Immunol. 2013;131:1376–1383.e3.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Snow AL, Xiao W, Stinson JR, et al. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations. J Exp Med. 2012;209:2247–61.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Crequer A, Troeger A, Patin E, et al. Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. J Clin Invest. 2012;122:3239–47.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Erman B, Bilic I, Hirschmugl T, et al. Combined immunodeficiency with CD4 lymphopenia and sclerosing cholangitis caused by a novel loss-of-function mutation affecting IL21R. Haematologica. 2015;100:e216–9.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Stepensky P, Keller B, Abuzaitoun O, et al. Extending the clinical and immunological phenotype of human interleukin-21 receptor deficiency. Haematologica. 2015;100:e72–6.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Kotlarz D, Ziętara N, Uzel G, et al. Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J Exp Med. 2013;210:433–43.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Watkins D, Schwartzentruber JA, Ganesh J, et al. Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband. J Med Genet. 2011;48:590–2.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Keller MD, Ganesh J, Heltzer M, et al. Severe combined immunodeficiency resulting from mutations in MTHFD1. Pediatrics. 2013;131:e629–34.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Alazami AM, Al-Helale M, Alhissi S, et al. Novel CARMIL2 mutations in patients with variable clinical dermatitis, infections, and combined immunodeficiency. Front Immunol. 2018;9:203.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Schober T, Magg T, Laschinger M, et al. A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun. 2017;8:14209.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Sorte HS, Osnes LT, Fevang B, et al. A potential founder variant in CARMIL2/RLTPR in three Norwegian families with warts, molluscum contagiosum, and T-cell dysfunction. Mol Genet Genomic Med. 2016;4:604–16.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Wang Y, Ma CS, Ling Y, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413–35.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Cellular Medicine, Newcastle UniversityNewcastle upon TyneUK
  2. 2.Paediatric Immunology and Haematopoietic Stem Cell Transplantation Unit, Great North Childrens’ HospitalNewcastle upon TyneUK

Personalised recommendations