Advertisement

Influence of the Flow of Self-Compacting Steel Fiber Reinforced Concrete on the Fiber Orientations, a Report on Work in Progress

  • Heiko HerrmannEmail author
  • Oksana Goidyk
  • Andres Braunbrück
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 95)

Abstract

This paper presents a report about work in progress of research on the influence of the flow of SCFRC on the fiber orientations. Mechanical properties of the short steel fiber reinforced cementitious materials mostly depend on the fiber orientation and spatial dispersion. Many studies have shown that it is possible to achieve the desired fiber orientation by optimizing the parameters of rheological properties or the casting process. In order to improve the key mechanical properties, multiple statistical experiments with various factors are needed. This paper analyzes the influence of casting velocity and formwork surface quality on the fiber distribution and orientation. A suitable technique for our method was to replace Steel Fiber Reinforced Self-Compacting Concrete (SFRSCC) by a transparent polymer with similar rheological properties as SFRSCC. Preliminary analysis of the experimental results shows that the fibers tend to orient mostly perpendicular to the flow direction and turn their orientation longitudinally near the walls. Experiments showed that the fiber spatial distribution was affected by the casting velocity. Faster casting velocities provided more preferable homogeneous distribution. Moreover, the roughness of the bottom of the formwork demonstrated some influence on the fiber orientations but no significant impact on the spatial dispersion. In addition, we used the image analysis method to estimate fiber orientation and distribution.

Notes

Acknowledgements

The authors gratefully acknowledge the funding by the Estonian Research Council by the exploratory research grant PUT1146.

We also thank Maria Kremsreiter who helped during her Erasmus+ internship at the Institute of Cybernetics. Therefore: With the support of the Erasmus+ programme of the European Union.

Thanks to E-Betoonelement, especially Aare Lessuk, Rasmus-R. Marjapuu and Sergei Graf, for preparing the experiment plate.

References

  1. 1.
    Beissel, R.A., Lim, H.: Self Compacting Concrete: Modern Concrete and Admixture Technology, pp. 607–612 (2000)Google Scholar
  2. 2.
    Brouwers, H.J.H., Radix, H.J.: Self-compacting concrete: theoretical and experimental study. Cem. Concr. Res. 35(11), 2116–2136 (2005)CrossRefGoogle Scholar
  3. 3.
    Nawy, E.G., Edward, G.: Fundamentals of High-performance Concrete. Wiley (2001)Google Scholar
  4. 4.
    Balaguru, P.N., Shah, S.P.: Fiber-reinforced cement composites (1992)Google Scholar
  5. 5.
    Lawler, J.S., Zampini, D., Shah, S.P.: Permeability of cracked hybrid fiber-reinforced mortar under load. Mater. J. 99(4), 379–385 (2002)Google Scholar
  6. 6.
    Voigt, T., Van Bui, K., Shah, S.P.: Drying shrinkage of concrete reinforced with fibers and welded-wire fabric. Mater. J. 101(2), 233–241 (2004)Google Scholar
  7. 7.
    Mesbah, H.A., Buyle-Bodin, F.: Efficiency of polypropylene and metallic fibres on control of shrinkage and cracking of recycled aggregate mortars. Constr. Build. Mater. 13(8), 439–447 (1999)CrossRefGoogle Scholar
  8. 8.
    Boulekbache, B., Hamrat, M., Chemrouk, M., Amziane, S.: Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Constr. Build. Mater. 24(9), 1664–1671 (2010)CrossRefGoogle Scholar
  9. 9.
    Ponikiewski, T., Gołaszewski, J., Rudzki, M., Bugdol, M.: Determination of steel fibres distribution in self-compacting concrete beams using x-ray computed tomography. Arch. Civ. Mech. Eng. 15, 558–568 (2015)CrossRefGoogle Scholar
  10. 10.
    Liu, J., Sun, W., Miao, C., Liu, J., Li, C.: Assessment of fiber distribution in steel fiber mortar using image analysis. J. Wuhan Univ. Technol. Mater. Sci. Ed. 27, 166–171 (2012)CrossRefGoogle Scholar
  11. 11.
    Stähli, P., Custer, R., van Mier, J.G.M.: On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Mater. Struct. 41(1), 189–196 (2008)CrossRefGoogle Scholar
  12. 12.
    Švec, O., Žirgulis, G., Bolander, J.E., Stang, H.: Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements. Cem. Concr. Compos. 50, 60–72 (2014)CrossRefGoogle Scholar
  13. 13.
    Soroushian, P., Lee, C.-D.: Distribution and orientation of fibers in steel fiber reinforced concrete. Mater. J. 87, 433–439 (1990)Google Scholar
  14. 14.
    Grigaliunas, P., Kringelis, T.: SCC flow induced steel fiber distribution and orientation. Non-destructive inductive method. In: 11th European Conference on Non-Destructive Testing, Prague, Czech Republic (2014)Google Scholar
  15. 15.
    Herrmann, H., Lees, A.: On the influence of the rheological boundary conditions on the fibre orientations in the production of steel fibre reinforced concrete elements. Proc. Est. Acad. Sci. 65(4), 408–413 (2016). Open-Access CC-BY-NC 4.0CrossRefGoogle Scholar
  16. 16.
    Promentilla, M.A.B., Sugiyama, T., Shimura, K.: Threedimensional imaging of cement-based materials with x-ray tomographic microscopy: visualization and quantification. In: International Conference on Microstructure Related Durability of Cementitious Composites, vol. 61, pp. 1357–1366 (2008)Google Scholar
  17. 17.
    Liu, J., Li, C., Liu, J., Cui, G., Yang, Z.: Study on 3D spatial distribution of steel fibers in fiber reinforced cementitious composites through micro-CT technique. Constr. Build. Mater. 48, 656–661 (2013)CrossRefGoogle Scholar
  18. 18.
    Pastorelli, E., Herrmann, H.: Time-efficient automated analysis for fibre orientations in steel fibre reinforced concrete. Proc. Est. Acad. Sci. 65(1), 28–36 (2016)CrossRefGoogle Scholar
  19. 19.
    Herrmann, H., Pastorelli, E., Kallonen, A., Suuronen, J.-P.: Methods for fibre orientation analysis of x-ray tomography images of steel fibre reinforced concrete (SFRC). J. Mater. Sci. 51(8), 3772–3783 (2016)CrossRefGoogle Scholar
  20. 20.
    Suuronen, J.-P., Kallonen, A., Eik, M., Puttonen, J., Serimaa, R., Herrmann, H.: Analysis of short fibres orientation in steel fibre reinforced concrete (SFRC) using x-ray tomography. J. Mater. Sci. 48(3), 1358–1367 (2013)CrossRefGoogle Scholar
  21. 21.
    Ferrara, L., Faifer, M., Toscani, S.: A magnetic method for non destructive monitoring of fiber dispersion and orientation in steel fiber reinforced cementitious composites–Part 1: method calibration. Mater. Struct., 1–15 (2011)Google Scholar
  22. 22.
    Karhunen, K., Seppänen, A., Lehikoinen, A., Monteiro, P.J.M., Kaipio, J.P.: Electrical resistance tomography imaging of concrete. Cem. Concr. Res. 40, 137–145 (2010)CrossRefGoogle Scholar
  23. 23.
    Torrents, J.M., Blanco, A., Pujadas, P., Aguado, A., Juan-Garcia, P., Sánchez-Moragues, M.Á.: Inductive method for assessing the amount and orientation of steel fibers in concrete. Materi. Struct. 45, 1577–1592 (2012)CrossRefGoogle Scholar
  24. 24.
    Schickert, M.: Progress in ultrasonic imaging of concrete. Mater. Struct. 38, 807–815 (2005)CrossRefGoogle Scholar
  25. 25.
    Aggelis, D.G., Soulioti, D., Barkoula, N.M., Paipetis, A.S., Matikas, T.E., Shiotani, T.: Acoustic emission monitoring of steel-fiber reinforced concrete beams under bending. Prog AE 14, 287–294 (2008)Google Scholar
  26. 26.
    Keru, W., Chen, B., Yao, W.: Study on the ae characteristics of fracture process of mortar, concrete and steel-fiber-reinforced concrete beams. Cem. Concr. Res. 30(9), 1495–1500 (2000)CrossRefGoogle Scholar
  27. 27.
    Soulioti, D., Barkoula, N.M., Paipetis, A., Matikas, T.E., Shiotani, T., Aggelis, D.G.: Acoustic emission behavior of steel fibre reinforced concrete under bending. Constr. Build. Mater. 23(12), 3532–3536 (2009)CrossRefGoogle Scholar
  28. 28.
    Roussel, N., Gram, A., Cremonesi, M., Ferrara, L., Krenzer, K., Mechtcherine, V., Shyshko, S., Skocec, J., Spangenberg, J., Svec, O., Thrane, L.N., Vasilic, K.: Numerical simulations of concrete flow: a benchmark comparison. Cem. Concr. Res. 79, 265–271 (2016)CrossRefGoogle Scholar
  29. 29.
    Svec, O., Skocek, J., Olesen, J.F., Stang, H.: Fibre reinforced self-compacting concrete flow simulations in comparison with l-box experiments using carbopol. In: 8th Rilem International Symposium on Fibre Reinforced Concrete (2012)Google Scholar
  30. 30.
    Ehrentraut, H., Muschik, W.: On symmetric irreducible tensors in d-dimensions. ARI Int. J. Phys. Eng. Sci. 51(2), 149–159 (1998)Google Scholar
  31. 31.
    Herrmann, H., Beddig, M.: Tensor series expansion of a spherical function for use in constitutive theory of materials containing orientable particles. Proc. Est. Acad. Sci. 67(1), 73–92 (2018). Open-Access CC-BY-NC 4.0CrossRefGoogle Scholar
  32. 32.
    Eik, M., Puttonen, J., Herrmann, H.: The effect of approximation accuracy of the orientation distribution function on the elastic properties of short fibre reinforced composites. Compos. Struct. 148, 12–18 (2016)CrossRefGoogle Scholar
  33. 33.
    Abràmoff, M.D., Magalhães, P.J., Ram, S.J.: Image processing with ImageJ. Biophotonics Int. 11(7), 36–42 (2004)Google Scholar
  34. 34.
    Herrmann, H.: Alignment tensor package for R (2016). http://bitbucket.org/vispar/alignment
  35. 35.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011). ISBN 3-900051-07-0Google Scholar
  36. 36.
    Lemon, J.: Plotrix: a package in the red light district of R. R-News 6(4), 8–12 (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Heiko Herrmann
    • 1
    Email author
  • Oksana Goidyk
    • 1
  • Andres Braunbrück
    • 1
  1. 1.Department of CyberneticsTallinn University of TechnologyTallinnEstonia

Personalised recommendations