An Initial Report on the Effect of the Fiber Orientation on the Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concrete

  • Heiko HerrmannEmail author
  • Andres Braunbrück
  • Tanel Tuisk
  • Oksana Goidyk
  • Hendrik Naar
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 95)


This paper presents a report about work in progress of research on the influence of the fiber orientations on the tensile strength of steel fiber concrete. Different fiber orientations in different parts of a structural element are caused by the casting process. Here, as an example, a small plate was cast of self-compacting concrete containing hooked-end steel fibers. The plate was cut into three beams, which in turn have been subjected to X-ray Computed Tomography scanning to obtain fiber orientations and to three-point bending test, to assess the tensile strength and fracture behaviour.



The authors gratefully acknowledge the funding by the Estonian Research Council by the exploratory research grant PUT1146.

We also thank Maria Kremsreiter who helped during her Erasmus+ internship at the Institute of Cybernetics. Therefore: With the support of the Erasmus+ programme of the European Union.

Thanks to E-Betoonelement, especially Aare Lessuk, Rasmus-R. Marjapuu and Sergei Graf, for preparing the experiment plate.


  1. 1.
    Eik, M., Lõhmus, K., Tigasson, M., Listak, M., Puttonen, J., Herrmann, H.: DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC. J. Mater. Sci. 48(10), 3745–3759 (2013)CrossRefGoogle Scholar
  2. 2.
    Herrmann, H.: An improved constitutive model for short fibre reinforced cementitious composites (SFRC) based on the orientation tensor. In: Generalized Continua as Models for Classical and Advanced Materials, pp. 213–227. Springer International Publishing, Cham (2016)Google Scholar
  3. 3.
    Laranjeira, F., Grünewald, S., Walraven, J., Blom, K., Molins, C., Aguadoa, A.: Characterization of the orientation profile in fiber reinforced concrete. Mater. Struct. 44(6), 1093–1111 (2011)Google Scholar
  4. 4.
    Žirgulis, G., Švec, O., Sarmiento, E.V., Geiker, M.R., Cwirzen, A., Kanstad, T.: Importance of quantification of steel fibre orientation for residual flexural tensile strength in FRC. Mater. Struct. 1–17 (2015)Google Scholar
  5. 5.
    Švec, O., Žirgulis, G., Bolander, J.E., Stang, H.: Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements. Cement Concr. Compos. 50, 60–72 (2014)CrossRefGoogle Scholar
  6. 6.
    Grünewald, S.: Performance-based design of self-compacting fibre reinforced concrete. Ph.D. thesis, Technische Universiteit Delft (2004)Google Scholar
  7. 7.
    Eik, M., Puttonen, J., Herrmann, H.: An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres. Compos. Struct. 121, 324–336 (2015)CrossRefGoogle Scholar
  8. 8.
    Eik, M., Herrmann, H., Puttonen, J.: Orthotropic constitutive model for steel fibre reinforced concrete: linear-elastic state and bases for the failure. In: Kouhia, R., Mäkinen, J., Pajunen, S., Saksala, T. (eds.) Proceedings of the XII Finnish Mechanics Days: 4–5 June 2015, Tampere, Finland, pp. 255–260 (2015)Google Scholar
  9. 9.
    Herrmann, H., Eik, M., Berg, V., Puttonen, J.: Phenomenological and numerical modelling of short fibre reinforced cementitious composites. Meccanica 49(8), 1985–2000 (2014)CrossRefGoogle Scholar
  10. 10.
    Krasnikovs, A., Kononova, O., Khabbaz, A., Machanovsky, E., Machanovsky, A.: Post-cracking behaviour of high strength fiber concrete prediction and validation. World Acad. Sci. Eng. Technol. 59, 988–992 (2011)Google Scholar
  11. 11.
    Eik, M., Puttonen, J., Herrmann, H.: The effect of approximation accuracy of the orientation distribution function on the elastic properties of short fibre reinforced composites. Compos. Struct. 148, 12–18 (2016)CrossRefGoogle Scholar
  12. 12.
    Herrmann, H., Beddig, M.: Tensor series expansion of a spherical function for use in constitutive theory of materials containing orientable particles. Proc. Est. Acad. Sci. 67(1), 73–92 (2018) (Open-Access CC-BY-NC 4.0)CrossRefGoogle Scholar
  13. 13.
    Kasper, T., Tvede-Jensen, B., Stang, H., Mjoernell, P., Slot, H., Vit, G., Thrane, L.N., Reimer, L.: Design guideline for structural applications of steel fibre reinforced concrete. Technical report, SFRC Consortium (2014)Google Scholar
  14. 14.
    Deutscher Ausschuss für Stahlbeton: DAfStb-Richtlinie. Beuth Verlag GmbH, Berlin (2010)Google Scholar
  15. 15.
    SIS.: Fibre concrete-design of fibre concrete structures (Swedish standard – SS 812310:2014) (2014)Google Scholar
  16. 16.
    ACI Committee 544.: 544.4r-88 design considerations for steel fiber reinforced concrete. Technical report, American Concrete Institute (2002)Google Scholar
  17. 17.
    ACI Committee 544.: 544.5r-10: Report on the physical properties and durability of fiber-reinforced concrete. Technical report, American Concrete Institute (2010)Google Scholar
  18. 18.
    SNIP.: 52-104-2006–steel fibre reinforced concrete structures design. Technical report, SNIP, Moskau (2007)Google Scholar
  19. 19.
    SNIP.: 52-104-2009–steel fibre reineorced concrete structures design. Technical report, SNIP, Moskau (2010)Google Scholar
  20. 20.
    Österreichische Bautechnikvereinigung. Richtlinie faserbeton, 2008. Österreichische Vereinigung für Beton- und BautechnikGoogle Scholar
  21. 21.
    Fib.: Model Code 2010. International Federation for Structural Concrete (fib) (2012)Google Scholar
  22. 22.
    Ponikiewski, T., Gołaszewski, J., Rudzki, M., Bugdol, M.: Determination of steel fibres distribution in self-compacting concrete beams using x-ray computed tomography. Arch. Civil Mech. Eng. 15, 558–568 (2015)CrossRefGoogle Scholar
  23. 23.
    Promentilla, M.A.B., Sugiyama, T., Shimura, K.: Threedimensional imaging of cement-based materials with x-ray tomographic microscopy: visualization and quantification. In: International Conference. Microstructure Relat Durab Cem Compos, vol. 61, pp. 1357–1366 (2008)Google Scholar
  24. 24.
    Liu, J., Li, C., Liu, J., Cui, G., Yang, Z.: Study on 3D spatial distribution of steel fibers in fiber reinforced cementitious composites through micro-ct technique. Constr. Build. Mater. 48, 656–661 (2013)CrossRefGoogle Scholar
  25. 25.
    Pastorelli, E., Herrmann, H.: Time-efficient automated analysis for fibre orientations in steel fibre reinforced concrete. Proc. Est. Acad. Sci. 65(1), 28–36 (2016)CrossRefGoogle Scholar
  26. 26.
    Herrmann, H., Pastorelli, E., Kallonen, A., Suuronen, J.-P.: Methods for fibre orientation analysis of x-ray tomography images of steel fibre reinforced concrete (SFRC). J. Mater. Sci. 51(8), 3772–3783 (2016)CrossRefGoogle Scholar
  27. 27.
    Suuronen, J.-P., Kallonen, A., Eik, M., Puttonen, J., Serimaa, R., Herrmann, H.: Analysis of short fibres orientation in steel fibre reinforced concrete (SFRC) using x-ray tomography. J. Mater. Sci. 48(3), 1358–1367 (2013)CrossRefGoogle Scholar
  28. 28.
    Liu, J., Sun, W., Miao, C., Liu, J., Li, C.: Assessment of fiber distribution in steel fiber mortar using image analysis. J. Wuhan Univ. Technol. Mater. Sci. Ed. 27, 166–171 (2012)CrossRefGoogle Scholar
  29. 29.
    Ferrara, L., Faifer, M., Toscani, S.: A magnetic method for non destructive monitoring of fiber dispersion and orientation in steel fiber reinforced cementitious composites—Part 1: method calibration. Mater. Struct. 1–15 (2011)Google Scholar
  30. 30.
    Karhunen, K., Seppänen, A., Lehikoinen, A., Monteiro, P.J.M., Kaipio, J.P.: Electrical resistance tomography imaging of concrete. Cement Concr. Res. 40, 137–145 (2010)CrossRefGoogle Scholar
  31. 31.
    Torrents, J.M., Blanco, A., Pujadas, P., Aguado, A., Juan-García, P., Sánchez-Moragues, M.Á.: Inductive method for assessing the amount and orientation of steel fibers in concrete. Mater. Struct. 45(10), 1577–1592 (2012)CrossRefGoogle Scholar
  32. 32.
    Schickert, M.: Progress in ultrasonic imaging of concrete. Mater. Struct. 38, 807–815 (2005)CrossRefGoogle Scholar
  33. 33.
    Grigaliunas, P., Kringelis, T.: SCC flow induced steel fiber distribution and orientation, non-destructive inductive method. In: 11th European Conference on Non-Destructive Testing. Prague, Czech Republic (2014)Google Scholar
  34. 34.
    Zhou, B., Uchida, Y.: Fiber orientation in ultra high performance fiber reinforced concrete and its visualization. In: 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures (2013)Google Scholar
  35. 35.
    Svec, O., Skocek, J., Olesen, J.F., Stang, H.: Fibre reinforced self-compacting concrete flow simulations in comparison with l-box experiments using carbopol. In: 8th Rilem International Symposium on Fibre Reinforced Concrete (2012)Google Scholar
  36. 36.
    Rens, K.L., Wipf, T.J., Klaiber, F.W.: Review of nondestructive evaluation techniques of civil infrastructure. J. Perform. Constr. Facil. 11, 152–160 (1997)CrossRefGoogle Scholar
  37. 37.
    Akhtar, S: Review of nondestructive testing methods for condition monitoring of concrete structures. J. Constr. Eng. (2013)Google Scholar
  38. 38.
    Al-Mattarneh, H.: Electromagnetic quality control of steel fiber concrete. Constr. Build. Mater. 73, 350–356 (2014)CrossRefGoogle Scholar
  39. 39.
    Shah, A.A., Hirose, S.: Nonlinear ultrasonic investigation of concrete damaged under uniaxial compression step loading. J. Mater. Civil Eng. 11, 476–484 (2009)CrossRefGoogle Scholar
  40. 40.
    Grosse, C.U., Reinhardt, H.W., Finck, F.: Signal-based acoustic emission techniques in civil engineering. J. Mater. Civil Eng. 15, 274–279 (2003)CrossRefGoogle Scholar
  41. 41.
    Herrmann, H., Lees, A.: On the influence of the rheological boundary conditions on the fibre orientations in the production of steel fibre reinforced concrete elements. Proc. Est. Acad. Sci. 65(4), 408–413 (2016) (Open-Access CC-BY-NC 4.0)CrossRefGoogle Scholar
  42. 42.
    Herrmann, H., Goidyk, O., Braunbrück, A.: Influence of the flow of self-compacting steel fiber reinforced concrete on the fiber orientations, a report on work in progress. In: Short Fiber Reinforced Cementitious Composites and Ceramics. Springer (2018)Google Scholar
  43. 43.
    Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: Determination of 3D porosity in steel fibre reinforced SCC beams using x-ray computed tomography. Constr. Build. Mater. 68, 333–340 (2014)CrossRefGoogle Scholar
  44. 44.
    du Plessis, A., le Roux, S.G., Guelpa, A.: Comparison of medical and industrial x-ray computed tomography for non-destructive testing. Case Stud. Nondestruct. Test. Eval. 6, 17–25 (2016)Google Scholar
  45. 45.
    Vicente, M.A., González, D.C., Mínguez, J.: Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans. Nondestruct. Test. Eval. 29(2), 164–182 (2014)CrossRefGoogle Scholar
  46. 46.
    Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: Steel fibre spacing in self-compacting concrete precast walls by x-ray computed tomography. Mater. Struct. 48(12), 3863–3874 (2015)CrossRefGoogle Scholar
  47. 47.
    Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: X-ray computed tomography harnessed to determine 3D spacing of steel fibres in self compacting concrete (SCC) slabs. Constr. Build. Mater. 74, 102–108 (2015)CrossRefGoogle Scholar
  48. 48.
    Minguez, M.A.V.J., Gonzalez, D.C.: Image data processing to obtain fibre orientation in fibre-reinforced elements using computed tomography scan. In Short Fiber Reinforced Cementitious Composites and Ceramics. Springer (2018)Google Scholar
  49. 49.
    ASTM International.: Standard test method for splitting tensile strength of cylindrical concrete specimens. Technical report, ASTM, 2004. Designation: C 496/C 496M – 04Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Heiko Herrmann
    • 1
    Email author
  • Andres Braunbrück
    • 1
    • 2
  • Tanel Tuisk
    • 2
  • Oksana Goidyk
    • 1
  • Hendrik Naar
    • 2
  1. 1.Department of CyberneticsTallinn University of TechnologyTallinnEstonia
  2. 2.Department of Civil Engineering and ArchitectureTallinn University of TechnologyTallinnEstonia

Personalised recommendations