Study of Crack Patterns of Fiber-Reinforced Concrete (FRC) Specimens Subjected to Static and Fatigue Testings Using CT-Scan Technology

  • Miguel A. VicenteEmail author
  • Gonzalo Ruiz
  • Dorys C. González
  • Jesús Mínguez
  • Manuel Tarifa
  • Xiaoxing Zhang
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 95)


This paper demonstrates the widely accepted hypothesis that the compressive testing is a particular case of a cyclic test where failure occurs during the first cycle. To perform this, a test on 32 fiber-reinforced high-performance concrete specimens have been carried out. Sixteen of them have been tested under low-cycle fatigue compressive loading up to failure. Eight of them have been tested under monotonic compressive loading, until failure too. And the last eight specimens have remained intact. All of them have been scanned using a Computed Tomography (CT) Scan in order to define the pattern of their damage, which includes voids and cracks. The results show that the average damage maps of monotonic and fatigue series are statistically identical, which confirms the hypothesis previously described. In addition, both series are different to the intact series, which means that not a random damage distribution occurs when specimens collapse.



The authors are grateful for the financial support from the Ministerio de Economía y Competitividad BIA2015-686678-C2-R, Spain, Junta de Comunidades de Castilla – La Mancha, Spain, Fondo Europeo de Desarrollo Regional, gran PEII-2014-016-P and INCRECYT Program.


  1. 1.
    Aas-Jackobsen, K.: Fatigue of concrete beams and columns. Ph.D. thesis, University of Trondheim (1970)Google Scholar
  2. 2.
    Bordelon, A.C., Roesler, J.R.: Spatial distribution of synthetic fibers in concrete with x-ray computed tomography. Cement Concr. Compos. 53, 35–43 (2014). Scholar
  3. 3.
    Herrmann, H., Pastorelli, E., Kallonen, A., Suuronen, J.P.: Methods for fibre orientation analysis of x-ray tomography images of steel fibre reinforced concrete (SFRC). J. Mater. Sci. 51(8), 3772–3783 (2016). Scholar
  4. 4.
    Hsu, T.: J. Am. Concr. Inst. 78(4), 192–305 (1981)Google Scholar
  5. 5.
    Oesch, T.S., Landis, E.N., Kuchma, D.A.: Conventional concrete and UHPC performance–damage relationships identified using computed tomography. J. Eng. Mech. 142(12), 04016101 (2016)CrossRefGoogle Scholar
  6. 6.
    Pastorelli, E., Herrmann, H.: Virtual reality visualization for short fibre orientation analysis. In: 2014 14th Biennial Baltic Electronic Conference (BEC), pp. 201–204 (2014).
  7. 7.
    Petkovic, G., Lenschow, R., Stemland, H., Rosseland, S.: Fatigue of high strength concrete. ACI Spec. Publ. 121(25), 505–525 (1990)Google Scholar
  8. 8.
    Pittino, G., Geier, G., Fritz, L., Hadwiger, M., Rosc, J., Pabel, T.: Computertomografische untersuchung von stahlfaserspritzbeton mit mehrdimensionalen transferfunktionen. Beton- und Stahlbetonbau 106(6), 364–370 (2011). Scholar
  9. 9.
    Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: Steel fibre spacing in self-compacting concrete precast walls by x-ray computed tomography. Mater. Struct. 48(12), 3863–3874 (2015a). Scholar
  10. 10.
    Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: X-ray computed tomography harnessed to determine 3D spacing of steel fibres in self compacting concrete (SCC) slabs. Constr. Build. Mater. 74, 102–108 (2015b). Scholar
  11. 11.
    Przybilla, C., Fernández-Cantelli, A., Castillo, E.: Deriving the primary cumulative distributive function of fracture stress for brittle materials from 3- and 4-point bending tests. J. Eur. Ceram. Soc. 31, 451–460 (2011)CrossRefGoogle Scholar
  12. 12.
    Saucedo, L., Yu, R., Medeiros, A., Zhang, X., Ruiz, G.: A probabilistic fatigue model based on the initial distribution to consider frequency effect in plain and fiber reinforced concrete. Int. J. Fatigue 48, 308–318 (2013)CrossRefGoogle Scholar
  13. 13.
    Schnell, J., Schladitz, K., Schuler, F.: Richtungsanalyse von fasern in betonen auf basis der computer-tomographie. Beton- und Stahlbetonbau 105(2), 72–77 (2010). Scholar
  14. 14.
    Suuronen, J.P., Kallonen, A., Eik, M., Puttonen, J., Serimaa, R., Herrmann, H.: Analysis of short fibres orientation in steel fibre reinforced concrete (SFRC) using x-ray tomography. J. Mater. Sci. 48(3), 1358–1367 (2013). Scholar
  15. 15.
    Tepfers, R., Kutti, T.: Fatigue strength of plain, ordinary and lightweight concrete. J. Am. Concr. Inst. 76(5), 635–652 (1979)Google Scholar
  16. 16.
    Vicente, M., Minguez, J., González, D.: The use of computed tomography to explore the microstructure of materials in civil engineering: from rocks to concrete. In: Halefoglu, D.A.M. (ed.) Computed Tomography-Advanced Applications. InTech (2017). Scholar
  17. 17.
    Vicente, M.A., González, D.C., Mínguez, J.: Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans. Nondestruct. Test. Eval. 29(2), 164–182 (2014). Scholar
  18. 18.
    Zhang, B., Phillips, D., Wu, K.: Effects of loading frequency and stress reversal on fatigue life of plain concrete. Mag. Concr. Res. 48(4), 292–305 (1996)Google Scholar
  19. 19.
    Zhao, D., Chang, Q., Yang, J., Song, Y.: A new model for fatigue life distribution of concrete. Key Eng. Mater. 348–349, 201–204 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Miguel A. Vicente
    • 1
    Email author
  • Gonzalo Ruiz
    • 2
  • Dorys C. González
    • 1
  • Jesús Mínguez
    • 1
  • Manuel Tarifa
    • 2
  • Xiaoxing Zhang
    • 2
  1. 1.Department of Civil EngineeringUniversity of BurgosBurgosSpain
  2. 2.Department of Applied MechanicsUniversity of Castilla – La ManchaCiudad RealSpain

Personalised recommendations