Advertisement

Fail Safe Routing Algorithm for Green Wireless Nano Body Sensor Network (GWNBSN)

  • G. R. Kanagachidambaresan
  • R. Maheswar
  • R. Jayaparvathy
  • Sabu M. Thampi
  • V. Mahima
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

The design of reliable routing has become obligatory in case of wireless nano body sensor network. This chapter envisages the issues in reliable routing of green wireless nano body sensor network (GWNBSN). The concept of nano sensor network reduces the size of nodes and it is easy to implant inside the human body. The molecular communication realizes series of reliability issues during its communication with the nearby nodes. An unforeseen molecular burst or fast bloodstream could make the DNA molecules to be confused and misguided. A fail safe reliable routing is proposed which investigates the patient’s state and decides the mode of communication as molecular or electromagnetic. The network is made fault tolerant from lack of energy faults and intermittent faults by classifying the data packets based on the state of subject, and routing the packets by energy harvesting capabilities and terminal voltage of the battery. The hierarchical hidden Markov model (HHMM) acts as the decision-maker to switch the packet to the next hop. Thus, the performance of the given protocol is analyzed with different harvesting capabilities, exhibiting to be reliable and energy efficient in nature.

Keywords

Hierarchical hidden Markov model (HHMM) Green wireless nano body sensor network (GWNBSN) Finite state machine (FSM) 

References

  1. 1.
    G.W. Hanson, Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag. 53(11), 3426–3435 (2005)CrossRefGoogle Scholar
  2. 2.
    J. Jornet, I. Akyildiz, Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans. Wirel. Commun. 10(10), 32113221 (2011)CrossRefGoogle Scholar
  3. 3.
    I.F. Akyildiz, F. Brunetti, C. Blazquez, Nanonetworks: a new communication paradigm. J. Comput. Netw. (Elsevier) 52(12), 2260–2279 (2008)CrossRefGoogle Scholar
  4. 4.
    I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey. J. Comput. Netw. 38(4), 393–422 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Gregori, I.F. Akyildiz, A new nano network architecture using agellated bacteria and catalytic nanomotors. IEEE J. Select. Areas Commun. 28(4), 612–619 (2010)CrossRefGoogle Scholar
  6. 6.
    I.F. Akyildiz, Josep Miquel Jornet, Electromagnetic wireless nanosensor networks. Nano Commun Netw. (Elsevier) 1, 3–19 (2010)CrossRefGoogle Scholar
  7. 7.
    X. Li, J. Qian, L. Chen, Y. Zhu, Q. Fang, S. He, Nanoparticle assisted DNA nanosensor, in Optical Fiber Communication and Optoelectronics Conference, 2007 Asia, October 2007, pp. 84–86 (2007)Google Scholar
  8. 8.
    F. Vullum, D. Teeters, Investigation of lithium battery nanoelectrode arrays and their component nanobatteries. J. Power Sources 146(1–2), 804–808 (2005)CrossRefGoogle Scholar
  9. 9.
    N. Agoulmine, K. Kim, S. Kim, T. Rim, J.-S. Lee, M. Meyyappan, Enabling communication and cooperation in bio-nanosensor networks: toward innovative healthcare solutions. IEEE Wireless Commun. 19(5), 4251 (2012)CrossRefGoogle Scholar
  10. 10.
    Z.L. Wang, Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18(22), 3553–3567 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Yang, Y. Qin, C. Li, G. Zhu, Z.L. Wang, Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Am. Chem. Soc. 9(3), 1201–1205 (2009)Google Scholar
  12. 12.
    J.M. Jornet, I.F. Akyildiz, Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Trans. Nanotechnol. 11(3), 570580 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Misra, N. Islam, J. Mahapatro, J.J.P.C. Rodrigues, Green wireless body area nanonetworks: energy management and the game of survival. IEEE J. Biomed. Health Inform. 18(2), 467–475 (2014). https://doi.org/10.1109/JBHI.2013.2293503 CrossRefGoogle Scholar
  14. 14.
    C.R. Yonzon, D.A. Stuart, X. Zhang, A.D. McFarland, C.L. Haynes, R.P.V. Duyne, Towards advanced chemical and biological nanosensors an overview. Talanta 67(3), 438–448 (2005)CrossRefGoogle Scholar
  15. 15.
    C. Hierold, A. Jungen, C. Stampfer, T. Helbling, Nano electromechanical sensors based on carbon nanotubes. Sensors Actuators A Phys. 136(1), 51–61 (2007)CrossRefGoogle Scholar
  16. 16.
    C. Roman, F. Ciontu, B. Courtois, Single molecule detection and macro-molecular weighting using an all-carbon-nanotube nano electromechanical sensor, in 4th IEEE Conference on Nanotechnology, August 2004, pp. 263–266Google Scholar
  17. 17.
    O. Leenaerts, B. Partoens, F. Peeters, Adsorption of small molecules on graphene. Microelectron. J. 40(4–5), 860–862 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Ranzoni, J.J. Schleipen, L.J. van IJzendoorn, M.W. Prins, Frequency-selective rotation of two-particle nanoactuators for rapid and sensitive detection of biomolecules. Nano Lett. 11(5), 2017–2022 (2011)CrossRefGoogle Scholar
  19. 19.
    T. Suda, M. Moore, T. Nakano, R. Egashira, A. Enomoto, Exploratory research on molecular Communication between nanomachines, in Genetic and Evolutionary Computation Conference (GECCO), Late Breaking Papers, Jun 2005Google Scholar
  20. 20.
    L. Parcerisa, I.F. Akyildiz, Molecular communication options for long range nanonetworks. J. Comput. Netw. (Elsevier) 53(16), 2753–2766 (2009)CrossRefGoogle Scholar
  21. 21.
    G.R. Kanagachidambaresan, A. Chitra, Fail safe fault tolerant mechanism for wireless body sensor network. Wireless Pers. Commun. J. 79, 247–260 (2014)Google Scholar
  22. 22.
    S. Modi, C. Nizak, S. Surana, S. Halder, Y. Krishnan, Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nano. 8(6), 459467 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Pierobon, I.F. Akyildiz, Information capacity of diffusion-based molecular communication in nanonetworks, in 2011 Proceedings of the IEEE International Conference Computer Communication, p. 506510 (2011)Google Scholar
  24. 24.
    S. Balasubramaniam, P. Lio, Multi-hop conjugation based bacteria nanonetworks. IEEE Trans. Nano Biosci. 12(1), 4759 (2013)Google Scholar
  25. 25.
    S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, T. Nakano, Molecular communication. J. Inst. Electron. Info. Commun. Eng. 89(2), 162 (2006)Google Scholar
  26. 26.
    T. Nakano, M.J. Moore, F. Wei, A.V. Vasilakos, J. Shuai, Molecular communication and networking: opportunities and challenges. IEEE Trans. Nano Biosci. 11(2), 135148 (2012)Google Scholar
  27. 27.
    G. Piro, G. Boggia, L.A. Grieco, On the design of an energy harvesting stack for body area nano-NETworks, Accepted, Nano Commun. Netw. https://doi.org/10.1016/j.nancom.2014.10.001 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • G. R. Kanagachidambaresan
    • 1
  • R. Maheswar
    • 2
  • R. Jayaparvathy
    • 3
  • Sabu M. Thampi
    • 4
  • V. Mahima
    • 5
  1. 1.Department of CSEVel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and TechnologyChennaiIndia
  2. 2.Department of ECESri Krishna College of TechnologyCoimbatoreIndia
  3. 3.Department of ECESSN College of EngineeringChennaiIndia
  4. 4.Indian Institute of Information Technology and Management - Kerala (IIITM-K)TrivandrumIndia
  5. 5.Department of ECEVel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and TechnologyChennaiIndia

Personalised recommendations