Advertisement

SAR Analysis of UWB Antennas for Wireless Body Area Network Applications

  • Doondi Kumar Janapala
  • M. Nesasudha
  • T. Mary Neebha
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

This work presents the design and development of a miniaturized compact UWB antenna for wireless body area networks (WBANs). The working of ultra-wideband (UWB) antennas and their notch characteristics are explained by considering several cases. First we consider a simple rectangular micro strip patch antenna and then improve its bandwidth by applying available UWB techniques; additionally, we discuss UWB antennas in WBANs and the importance of having band rejection characteristics. We consider another fractal-based miniaturized UWB antenna with notch characterizes using metamaterial-based unit cells etched from either ground or radiating elements to act as a filter section. Comparative illustrations are given with the help of reflection curves, voltage standing wave ratio, and specific absorption rate analysis.

Keywords

WBAN Miniaturization Fractal geometry Metamaterial DGS SAR 

Notes

Acknowledgments

We thank the Defense Research and Development Organisation (DRDO), India, for supporting this work through Research Grant NO.ERIP/ER/1503211/M/01/1703.

References

  1. 1.
    D. Chaturvedi, S. Raghavan, A dual-band half-mode substrate integrated waveguidebased antenna for WLAN/WBAN applications. Int. J. RF Microw. Comput. Aided Eng. 28, e21239 (2018). https://doi.org/10.1002/mmce.21239 CrossRefGoogle Scholar
  2. 2.
    M. Nadeem, A.N. Khan, A. Ali Khan, T. Azim, Low profile CPW fed slotted planar inverted cone ultra-wide band antenna for WBAN applications. Microw. Opt. Technol. Lett. 60, 870–876 (2018). https://doi.org/10.1002/mop.31070 CrossRefGoogle Scholar
  3. 3.
    X. Tong, C. Liu, X. Liu, H. Guo, X. Yang, Dual-band on-/off-body reconfigurable antenna for wireless body area network (WBAN) applications. Microw. Opt. Technol. Lett. 60, 945–951 (2018). https://doi.org/10.1002/mop.31088 CrossRefGoogle Scholar
  4. 4.
    S. Yan, P.J. Soh, G.A.E. Vandenbosch, Wearable dual-band magneto-electric dipole antenna for WBAN/WLAN applications. IEEE Trans. Antennas Propag. 63(9), 4165–4169 (2015)CrossRefGoogle Scholar
  5. 5.
    M.N. Shakib, M. Moghavvemi, W.N.L.B.W. Mahadi, Design of a tri-band off-body antenna for WBAN communication. IEEE Antennas Wirel Propag Lett 16, 210–213 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Baghaei Nejad, M. Shen, T. Koivisto, et al., Analog Integr. Circ. Sig. Process 50, 47 (2007). https://doi.org/10.1007/s10470-006-9617-0 CrossRefGoogle Scholar
  7. 7.
    A. Desai, T. Upadhyaya, R. Patel, S. Bhatt, P. Mankodi, Wideband high gain fractal antenna for wireless applications. Progr. Electromagnet. Res. Lett. 74, 125–130 (2018)CrossRefGoogle Scholar
  8. 8.
    H. Zemmour, G. Baudoin and A. Diet, "Small “F-gain” printed slot antenna for IR-UWB wireless sensor networks applications, 2014 44th European Microwave Conference, Rome, 2014, pp. 1675–1678. https://doi.org/10.1109/EuMC.2014.6986777.CrossRefGoogle Scholar
  9. 9.
    Z.N. Chen, Experimental characterization of UWB antennas for on-body communications. IEEE Trans. Antennas Propag 57, 866–874 (2009)CrossRefGoogle Scholar
  10. 10.
    K.Y. Yazdandoost, K. Hamaguchi, Very small UWB antenna for WBAN applications (2011 5th International Symposium on Medical Information and Communication Technology, Montreux, 2011), pp. 70–73. https://doi.org/10.1109/ISMICT.2011.5759799 CrossRefGoogle Scholar
  11. 11.
    M. Klemm, I.Z. Kovcs, G.F. Pedersen, G. Troster, Novel small-size directional antenna for UWB WBAN/WPAN applications. IEEE Trans. Antennas Propag. 53(12), 3884–3896 (2005). https://doi.org/10.1109/TAP.2005.859906 CrossRefGoogle Scholar
  12. 12.
    Z. Mohammadi, R. Saadane, D. Aboutajdine, New high-rate UWB scheme for WBAN-based healthcare systems. Progr. Electromagnet. Res. B 60, 125–139 (2014)CrossRefGoogle Scholar
  13. 13.
    K. Shafique, B.A. Khawaja, M.A. Tarar, B.M. Khan, M. Mustaqim, A. Raza, A wearable ultra-wideband antenna for wireless body area networks. Microw. Opt. Technol. Lett. 58(7), 1710–1715 (2016)CrossRefGoogle Scholar
  14. 14.
    J.R. Verbiest, G.A.E. Vandenbosch, A novel small-size printed tapered monopole antenna for UWB WBAN. IEEE Antennas Wirel Propag Lett 5, 377–379 (2006)CrossRefGoogle Scholar
  15. 15.
    D. Yang, J. Hu, S. Liu, A low profile UWB antenna for WBAN applications. IEEE Access 6, 25214–25219 (2018)CrossRefGoogle Scholar
  16. 16.
    Z. Liu, X. Wu, Y. Zhang, P. Ye, Z. Ding, C. Hu, Very compact 5.5GHz band-notched UWB-MIMO antennas with high isolation. Progr. Electromagnet.Res C 76, 109–118 (2017)CrossRefGoogle Scholar
  17. 17.
    H.S. Mewaraa, J.K. Deegwala, M.M. Sharmab, A slot resonators based quintuple band-notched Y-shaped planar monopole ultra-wideband antenna. Int. J. Electron. Commun. 83, 470–478 (2018)CrossRefGoogle Scholar
  18. 18.
    H.S. Mewara, D. Jhanwarb, M.M. Sharmac, J.K. Deegwala, A printed monopole ellipzoidal UWB antenna with four band rejection characteristics. Int. J. Electron. Commun. 83, 222–232 (2018)CrossRefGoogle Scholar
  19. 19.
    N. Jaglana, S.D. Guptaa, E. Thakurb, D. Kumarb, B.K. Kanaujiac, S. Srivastavaa, Triple band notched mushroom and uniplanar EBG structures based UWB MIMO/Diversity antenna with enhanced wide band isolation. Int. J. Electron. Commun. 90, 36–44 (2018)CrossRefGoogle Scholar
  20. 20.
    C.R. Jettia, V.R. Nandanavanamb, Trident-shape strip loaded dual band-notched UWB MIMO antenna for portable device applications. Int. J. Electron. Commun. 83, 11–21 (2018)CrossRefGoogle Scholar
  21. 21.
    D. Yadava, M.P. Abegaonkarb, S.K. Koulb, V. Tiwaria, D. Bhatnagarc, A compact dual band-notched UWB circular monopole antenna with parasitic resonators. Int. J. Electron. Commun. 84, 313–320 (2018)CrossRefGoogle Scholar
  22. 22.
    S. Tripathi, A. Mohan, S. Yadav, A performance study of a fractal UWB antenna for on-body WBAN applications. Microw. Opt. Technol. Lett. 59, 2201–2207 (2017). https://doi.org/10.1002/mop.30701 CrossRefGoogle Scholar
  23. 23.
    A. Karimbu Vallappil, B.A. Khawaja, I. Khan, M. Mustaqim, Dual-band Minkowski–Sierpinski fractal antenna for next generation satellite communications and wireless body area networks. Microw. Opt. Technol. Lett. 60, 171–178 (2017). https://doi.org/10.1002/mop.30931 CrossRefGoogle Scholar
  24. 24.
    V.R. Nuthakki, S. Dhamodharan, UWB Metamaterial-based miniaturized planar monopole antennas. Int. J. Electron. Commun. 82, 93–103 (2017)CrossRefGoogle Scholar
  25. 25.
    G. Varamini a, A. Keshtkar, M. Naser-Moghadasi, Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification. Int. J. Electron. Commun. 83, 213–221 (2018)CrossRefGoogle Scholar
  26. 26.
    R.K. Saraswat, M. Kumar, Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications. Progr. Electromagnet. Res. B 65, 65–80 (2016)CrossRefGoogle Scholar
  27. 27.
    G. Saleh, F. Sibaii, N. Alashban, H. Alkhateeb, F. Hegazi, M. Hegazi, Effects of tissues and geometric shapes of phantoms on the specific energy absorption rate. Int. J. RF Microw. Comput. Aided Eng. 28, e21252 (2018). https://doi.org/10.1002/mmce.21252 CrossRefGoogle Scholar
  28. 28.
    S. Jemima Priyadarshini, D.J. Hemanth, Investigation and reduction methods of specific absorption rate for biomedical applications: a survey. Int. J. RF Microw. Comput. Aided Eng. 28, e21211 (2017). https://doi.org/10.1002/mmce.21211 CrossRefGoogle Scholar
  29. 29.
    G. Gao, B. Hu, S. Wang, C. Yang, Wearable planar inverted-F antenna with stable characteristic and low specific absorption rate. Microw. Opt. Technol. Lett. 60, 876–882 (2018). https://doi.org/10.1002/mop.31069 CrossRefGoogle Scholar
  30. 30.
    J. J. Park et al. (eds.), Multimedia and ubiquitous engineering. Lect. Notes Electr. Eng. 240. https://doi.org/10.1007/978-94-007-6738-6_107 Google Scholar
  31. 31.
    V. Kumar, B. Gupta, On-body measurements of SS-UWB patch antenna for WBANapplications. Int. J. Electron. Commun. 70, 668–675 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Doondi Kumar Janapala
    • 1
  • M. Nesasudha
    • 1
  • T. Mary Neebha
    • 1
  1. 1.RF Research Laboratory, Department of Electronics and Communication EngineeringKarunya Institute of Technology and SciencesCoimbatoreIndia

Personalised recommendations