Pharmacology of the Pulmonary Circulation

  • Cara ReimerEmail author
  • John Granton


The pulmonary vasculature is a complex system, and studies of the effects of anesthetic drugs on this system are often contradictory. A balanced anesthetic technique with adherence to the hemodynamic goals of maintenance of right ventricular preload and right coronary artery perfusion is the safest choice for patients with PHTN. There are no absolute contraindications to most anesthetic drugs in patients with pulmonary hypertension. Inhaled pulmonary vasodilators can be used to optimize hemodynamic variables perioperatively, although effects on gas exchange are variable.


Pulmonary hypertension Right ventricle Pharmacology Pulmonary vascular disease Anesthesia 



(mean) Pulmonary artery pressure


Confidence interval


Cardiac output


Left atrial pressure


Pulmonary hypertension


Paravertebral block


Pulmonary vascular resistance (index)


Systemic vascular resistance (index)


Thoracic epidural analgesia


  1. 1.
    Galiè N, Simonneau G. The fifth world symposium on pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D1–3.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Galiè N, Humbert M, Vachiéry J-L, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119.CrossRefGoogle Scholar
  3. 3.
    Hemnes AR, Kawut SM. The right ventricle in pulmonary hypertension: from dogma to data. Am J Respir Crit Care Med. 2010;182(5):586–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bootsma IT, de Lange F, Koopmans M, et al. Right ventricular function after cardiac surgery is a strong independent predictor for long-term mortality. J Cardiothorac Vasc Anesth. 2017;31(5):1656–62.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ramakrishna G, Sprung J, Ravi BS, Chandrasekaran K, McGoon MD. Impact of pulmonary hypertension on the outcomes of noncardiac surgery: predictors of perioperative morbidity and mortality. J Am Coll Cardiol. 2005;45(10):1691–9.CrossRefGoogle Scholar
  6. 6.
    Lai HC, Wang KY, Lee WL, Ting CT, Liu TJ. Severe pulmonary hypertension complicates postoperative outcome of non-cardiac surgery. Br J Anaesth. 2007;99(2):184–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Yang B, DeBenedictus C, Watt T, et al. The impact of concomitant pulmonary hypertension on early and late outcomes following surgery for mitral stenosis. J Thorac Cardiovasc Surg. 2016;152(2):394–400.e391.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Patel HJ, Likosky DS, Pruitt AL, Murphy ET, Theurer PF, Prager RL. Aortic valve replacement in the moderately elevated risk patient: a population-based analysis of outcomes. Ann Thorac Surg. 2016;102(5):1466–72.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Mentias A, Patel K, Patel H, et al. Effect of pulmonary vascular pressures on long-term outcome in patients with primary mitral regurgitation. J Am Coll Cardiol. 2016;67(25):2952–61.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hoeper MM, Granton J. Intensive care unit management of patients with severe pulmonary hypertension and right heart failure. Am J Respir Crit Care Med. 2011;184(10):1114–24.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Maxwell BG, Jackson E. Role of ketamine in the management of pulmonary hypertension and right ventricular failure. J Cardiothorac Vasc Anesth. 2012;26(3):e24–5; author reply e25–26.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hirota K, Lambert DG. Ketamine: its mechanism(s) of action and unusual clinical uses. Br J Anaesth. 1996;77(4):441–4.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Baraka A, Harrison T, Kachachi T. Catecholamine levels after ketamine anesthesia in man. Anesth Analg. 1973;52(2):198–200.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lundy PM, Lockwood PA, Thompson G, Frew R. Differential effects of ketamine isomers on neuronal and extraneuronal catecholamine uptake mechanisms. Anesthesiology. 1986;64(3):359–63.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Maruyama K, Maruyama J, Yokochi A, Muneyuki M, Miyasaka K. Vasodilatory effects of ketamine on pulmonary arteries in rats with chronic hypoxic pulmonary hypertension. Anesth Analg. 1995;80(4):786–92.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee TS, Hou X. Vasoactive effects of ketamine on isolated rabbit pulmonary arteries. Chest. 1995;107(4):1152–5.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Dumas SJPF, Bru-Mercier G, Ranchoux B, Rücker-Martin C, Gouadon E, Vocelle M, Dorfmüller P, Fadel E, Humbert M, Cohen-Kaminsky S. Role of NMDA receptors in vascular remodelling associated to pulmonary hypertension. Eur Respir J. 2014;44(Supp 58):314.Google Scholar
  18. 18.
    Balfors E, Haggmark S, Nyhman H, Rydvall A, Reiz S. Droperidol inhibits the effects of intravenous ketamine on central hemodynamics and myocardial oxygen consumption in patients with generalized atherosclerotic disease. Anesth Analg. 1983;62(2):193–7.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Levanen J, Makela ML, Scheinin H. Dexmedetomidine premedication attenuates ketamine-induced cardiostimulatory effects and postanesthetic delirium. Anesthesiology. 1995;82(5):1117–25.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Reich DL, Silvay G. Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth. 1989;36(2):186–97.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tweed WA, Minuck M, Mymin D. Circulatory responses to ketamine anesthesia. Anesthesiology. 1972;37(6):613–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Gooding JM, Dimick AR, Tavakoli M, Corssen G. A physiologic analysis of cardiopulmonary responses to ketamine anesthesia in noncardiac patients. Anesth Analg. 1977;56(6):813–6.PubMedGoogle Scholar
  23. 23.
    Williams GD, Philip BM, Chu LF, et al. Ketamine does not increase pulmonary vascular resistance in children with pulmonary hypertension undergoing sevoflurane anesthesia and spontaneous ventilation. Anesth Analg. 2007;105(6):1578–84, table of contents.PubMedCrossRefGoogle Scholar
  24. 24.
    Oklu E, Bulutcu FS, Yalcin Y, Ozbek U, Cakali E, Bayindir O. Which anesthetic agent alters the hemodynamic status during pediatric catheterization? Comparison of propofol versus ketamine. J Cardiothorac Vasc Anesth. 2003;17(6):686–90.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Friesen RH, Twite MD, Nichols CS, et al. Hemodynamic response to ketamine in children with pulmonary hypertension. Paediatr Anaesth. 2016;26(1):102–8.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Heller AR, Litz RJ, Koch T. A fine balance – one-lung ventilation in a patient with Eisenmenger syndrome. Br J Anaesth. 2004;92(4):587–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Rees DI, Gaines GY 3rd. One-lung anesthesia – a comparison of pulmonary gas exchange during anesthesia with ketamine or enflurane. Anesth Analg. 1984;63(5):521–5.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Aye T, Milne B. Ketamine anesthesia for pericardial window in a patient with pericardial tamponade and severe COPD. Can J Anaesth. 2002;49(3):283–6.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kopka A, McMenemin IM, Serpell MG, Quasim I. Anaesthesia for cholecystectomy in two non-parturients with Eisenmenger's syndrome. Acta Anaesthesiol Scand. 2004;48(6):782–6.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Burbridge MA, Brodt J, Jaffe RA. Ventriculoperitoneal shunt insertion under monitored anesthesia care in a patient with severe pulmonary hypertension. A A Case Rep. 2016;7(2):27–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Trapani G, Altomare C, Liso G, Sanna E, Biggio G. Propofol in anesthesia. Mechanism of action, structure-activity relationships, and drug delivery. Curr Med Chem. 2000;7(2):249–71.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Suzuki R, Maehara R, Kobuchi S, Tanaka R, Ohkita M, Matsumura Y. Beneficial effects of gamma-aminobutyric acid on right ventricular pressure and pulmonary vascular remodeling in experimental pulmonary hypertension. Life Sci. 2012;91(13–14):693–8.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kondo U, Kim SO, Nakayama M, Murray PA. Pulmonary vascular effects of propofol at baseline, during elevated vasomotor tone, and in response to sympathetic alpha- and beta-adrenoreceptor activation. Anesthesiology. 2001;94(5):815–23.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Edanaga M, Nakayama M, Kanaya N, Tohse N, Namiki A. Propofol increases pulmonary vascular resistance during alpha-adrenoreceptor activation in normal and monocrotaline-induced pulmonary hypertensive rats. Anesth Analg. 2007;104(1):112–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kondo U, Kim SO, Murray PA. Propofol selectively attenuates endothelium-dependent pulmonary vasodilation in chronically instrumented dogs. Anesthesiology. 2000;93(2):437–46.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ouedraogo N, Mounkaila B, Crevel H, Marthan R, Roux E. Effect of propofol and etomidate on normoxic and chronically hypoxic pulmonary artery. BMC Anesthesiol. 2006;6:2.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bennett JM, Ehrenfeld JM, Markham L, Eagle SS. Anesthetic management and outcomes for patients with pulmonary hypertension and intracardiac shunts and Eisenmenger syndrome: a review of institutional experience. J Clin Anesth. 2014;26(4):286–93.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Colvin MP, Savege TM, Newland PE, et al. Cardiorespiratory changes following induction of anaesthesia with etomidate in patients with cardiac disease. Br J Anaesth. 1979;51(6):551–6.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Sarkar M, Laussen PC, Zurakowski D, Shukla A, Kussman B, Odegard KC. Hemodynamic responses to etomidate on induction of anesthesia in pediatric patients. Anesth Analg. 2005;101(3):645–50, table of contents.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Coskun D, Mahli A, Korkmaz S, et al. Anaesthesia for caesarean section in the presence of multivalvular heart disease and severe pulmonary hypertension: a case report. Cases J. 2009;2:9383.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lazol JP, Lichtenstein SE, Jooste EH, et al. Effect of dexmedetomidine on pulmonary artery pressure after congenital cardiac surgery: a pilot study. Pediatr Crit Care Med. 2010;11(5):589–92.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kaur M, Singh PM. Current role of dexmedetomidine in clinical anesthesia and intensive care. Anesth Essays Res. 2011;5(2):128–33.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hentrich F, Gothert M, Greschuchna D. Noradrenaline release in the human pulmonary artery is modulated by presynaptic alpha 2-adrenoceptors. J Cardiovasc Pharmacol. 1986;8(3):539–44.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    De Mey J, Vanhoutte PM. Uneven distribution of postjunctional alpha 1-and alpha 2-like adrenoceptors in canine arterial and venous smooth muscle. Circ Res. 1981;48(6 Pt 1):875–84.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bloor BC, Ward DS, Belleville JP, Maze M. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology. 1992;77(6):1134–42.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77(6):1125–33.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93(2):382–94.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Friesen RH, Nichols CS, Twite MD, et al. The hemodynamic response to dexmedetomidine loading dose in children with and without pulmonary hypertension. Anesth Analg. 2013;117(4):953–9.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Sharp DB, Wang X, Mendelowitz D. Dexmedetomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res. 2014;1574:1–5.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kernan S, Rehman S, Meyer T, Bourbeau J, Caron N, Tobias JD. Effects of dexmedetomidine on oxygenation during one-lung ventilation for thoracic surgery in adults. J Minim Access Surg. 2011;7(4):227–31.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Bhargava HN, Villar VM, Cortijo J, Morcillo EJ. Binding of [3H][D-Ala2, MePhe4, Gly-ol5] enkephalin, [3H][D-Pen2, D-Pen5]enkephalin, and [3H]U-69,593 to airway and pulmonary tissues of normal and sensitized rats. Peptides. 1997;18(10):1603–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Peng P, Huang LY, Li J, et al. Distribution of kappa-opioid receptor in the pulmonary artery and its changes during hypoxia. Anat Rec (Hoboken). 2009;292(7):1062–7.CrossRefGoogle Scholar
  53. 53.
    Zhang L, Li J, Shi Q, et al. Role of kappa-opioid receptor in hypoxic pulmonary artery hypertension and its underlying mechanism. Am J Ther. 2013;20(4):329–36.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kaye AD, Hoover JM, Kaye AJ, et al. Morphine, opioids, and the feline pulmonary vascular bed. Acta Anaesthesiol Scand. 2008;52(7):931–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Greenberg S, McGowan C, Xie J, Summer WR. Selective pulmonary and venous smooth muscle relaxation by furosemide: a comparison with morphine. J Pharmacol Exp Ther. 1994;270(3):1077–85.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Du H, Orii R, Yamada Y, et al. Pancuronium increases pulmonary arterial pressure in lung injury. Br J Anaesth. 1996;77(4):526–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Hou VY, Hirshman CA, Emala CW. Neuromuscular relaxants as antagonists for M2 and M3 muscarinic receptors. Anesthesiology. 1998;88(3):744–50.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Norel X, Walch L, Costantino M, et al. M1 and M3 muscarinic receptors in human pulmonary arteries. Br J Pharmacol. 1996;119(1):149–57.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    McCoy EP, Maddineni VR, Elliott P, Mirakhur RK, Carson IW, Cooper RA. Haemodynamic effects of rocuronium during fentanyl anaesthesia: comparison with vecuronium. Can J Anaesth. 1993;40(8):703–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Searle NR, Thomson I, Dupont C, et al. A two-center study evaluating the hemodynamic and pharmacodynamic effects of cisatracurium and vecuronium in patients undergoing coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 1999;13(1):20–5.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Kobayashi Y, Amenta F. Neurotransmitter receptors in the pulmonary circulation with particular emphasis on pulmonary endothelium. J Auton Pharmacol. 1994;14(2):137–64.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Barnes PJ, Liu SF. Regulation of pulmonary vascular tone. Pharmacol Rev. 1995;47(1):87–131.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Greenberg B, Rhoden K, Barnes PJ. Endothelium-dependent relaxation of human pulmonary arteries. Am J Phys. 1987;252(2 Pt 2):H434–8.Google Scholar
  64. 64.
    Pearl RG, Maze M, Rosenthal MH. Pulmonary and systemic hemodynamic effects of central venous and left atrial sympathomimetic drug administration in the dog. J Cardiothorac Anesth. 1987;1(1):29–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Roscher R, Ingemansson R, Algotsson L, Sjoberg T, Steen S. Effects of dopamine in lung-transplanted pigs at 32 degrees C. Acta Anaesthesiol Scand. 1999;43(7):715–21.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kwak YL, Lee CS, Park YH, Hong YW. The effect of phenylephrine and norepinephrine in patients with chronic pulmonary hypertension*. Anaesthesia. 2002;57(1):9–14.PubMedCrossRefGoogle Scholar
  67. 67.
    Vlahakes GJ, Turley K, Hoffman JI. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation. 1981;63(1):87–95.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Jin HK, Yang RH, Chen YF, Thornton RM, Jackson RM, Oparil S. Hemodynamic effects of arginine vasopressin in rats adapted to chronic hypoxia. J Appl Physiol. 1989;66(1):151–60.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Leather HA, Segers P, Berends N, Vandermeersch E, Wouters PF. Effects of vasopressin on right ventricular function in an experimental model of acute pulmonary hypertension. Crit Care Med. 2002;30(11):2548–52.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Tayama E, Ueda T, Shojima T, et al. Arginine vasopressin is an ideal drug after cardiac surgery for the management of low systemic vascular resistant hypotension concomitant with pulmonary hypertension. Interact Cardiovasc Thorac Surg. 2007;6(6):715–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Price LC, Forrest P, Sodhi V, et al. Use of vasopressin after Caesarean section in idiopathic pulmonary arterial hypertension. Br J Anaesth. 2007;99(4):552–5.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Currigan DA, Hughes RJ, Wright CE, Angus JA, Soeding PF. Vasoconstrictor responses to vasopressor agents in human pulmonary and radial arteries: an in vitro study. Anesthesiology. 2014;121(5):930–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Jiang C, Qian H, Luo S, et al. Vasopressors induce passive pulmonary hypertension by blood redistribution from systemic to pulmonary circulation. Basic Res Cardiol. 2017;112(3):21.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Dube L, Granry JC. The therapeutic use of magnesium in anesthesiology, intensive care and emergency medicine: a review. Can J Anaesth. 2003;50(7):732–46.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Fullerton DA, Hahn AR, Agrafojo J, Sheridan BC, McIntyre RC Jr. Magnesium is essential in mechanisms of pulmonary vasomotor control. J Surg Res. 1996;63(1):93–7.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    al-Halees Z, Afrane B, el-Barbary M. Magnesium sulfate to facilitate weaning of nitric oxide in pulmonary hypertension. Ann Thorac Surg. 1997;63(1):298–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Haas NA, Kemke J, Schulze-Neick I, Lange PE. Effect of increasing doses of magnesium in experimental pulmonary hypertension after acute pulmonary embolism. Intensive Care Med. 2004;30(11):2102–9.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ho JJ, Rasa G. Magnesium sulfate for persistent pulmonary hypertension of the newborn. Cochrane Database Syst Rev. 2007;3:CD005588.Google Scholar
  79. 79.
    Nakayama M, Kondo U, Murray PA. Pulmonary vasodilator response to adenosine triphosphate-sensitive potassium channel activation is attenuated during desflurane but preserved during sevoflurane anesthesia compared with the conscious state. Anesthesiology. 1998;88(4):1023–35.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Priebe HJ. Differential effects of isoflurane on regional right and left ventricular performances, and on coronary, systemic, and pulmonary hemodynamics in the dog. Anesthesiology. 1987;66(3):262–72.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kerbaul F, Bellezza M, Mekkaoui C, et al. Sevoflurane alters right ventricular performance but not pulmonary vascular resistance in acutely instrumented anesthetized pigs. J Cardiothorac Vasc Anesth. 2006;20(2):209–16.PubMedCrossRefGoogle Scholar
  82. 82.
    Cheng DC, Edelist G. Isoflurane and primary pulmonary hypertension. Anaesthesia. 1988;43(1):22–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Rorie DK, Tyce GM, Sill JC. Increased norepinephrine release from dog pulmonary artery caused by nitrous oxide. Anesth Analg. 1986;65(6):560–4.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Schulte-Sasse U, Hess W, Tarnow J. Pulmonary vascular responses to nitrous oxide in patients with normal and high pulmonary vascular resistance. Anesthesiology. 1982;57(1):9–13.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Konstadt SN, Reich DL, Thys DM. Nitrous oxide does not exacerbate pulmonary hypertension or ventricular dysfunction in patients with mitral valvular disease. Can J Anaesth. 1990;37(6):613–7.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Myles PS, Leslie K, Chan MT, et al. The safety of addition of nitrous oxide to general anaesthesia in at-risk patients having major non-cardiac surgery (ENIGMA-II): a randomised, single-blind trial. Lancet. 2014;384(9952):1446–54.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Leslie K, Myles PS, Kasza J, et al. Nitrous oxide and serious long-term morbidity and mortality in the evaluation of nitrous oxide in the gas mixture for anaesthesia (ENIGMA)-II trial. Anesthesiology. 2015;123(6):1267–80.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Houfflin Debarge V, Sicot B, Jaillard S, et al. The mechanisms of pain-induced pulmonary vasoconstriction: an experimental study in fetal lambs. Anesth Analg. 2007;104(4):799–806.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Veering BT, Cousins MJ. Cardiovascular and pulmonary effects of epidural anaesthesia. Anaesth Intensive Care. 2000;28(6):620–35.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Wink J, de Wilde RB, Wouters PF, et al. Thoracic epidural anesthesia reduces right ventricular systolic function with maintained ventricular-pulmonary coupling. Circulation. 2016;134(16):1163–75.PubMedCrossRefGoogle Scholar
  91. 91.
    Garutti I, Olmedilla L, Cruz P, Pineiro P, De la Gala F, Cirujano A. Comparison of the hemodynamic effects of a single 5 mg/kg dose of lidocaine with or without epinephrine for thoracic paravertebral block. Reg Anesth Pain Med. 2008;33(1):57–63.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Armstrong P. Thoracic epidural anaesthesia and primary pulmonary hypertension. Anaesthesia. 1992;47(6):496–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Mallampati SR. Low thoracic epidural anaesthesia for elective cholecystectomy in a patient with congenital heart disease and pulmonary hypertension. Can Anaesth Soc J. 1983;30(1):72–6.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Swamy MC, Mukherjee A, Rao LL, Pandith S. Anaesthetic management of a patient with severe pulmonary arterial hypertension for renal transplantation. Indian J Anaesth. 2017;61(2):167–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sztrymf B, Souza R, Bertoletti L, et al. Prognostic factors of acute heart failure in patients with pulmonary arterial hypertension. Eur Respir J. 2010;35(6):1286–93.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Fox DL, Stream AR, Bull T. Perioperative management of the patient with pulmonary hypertension. Semin Cardiothorac Vasc Anesth. 2014;18(4):310–8.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Vonk-Noordegraaf A, Haddad F, Chin KM, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62(S):D22–33.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.PubMedCrossRefGoogle Scholar
  99. 99.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994;368(6474):850–3.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Troncy E, Collet JP, Shapiro S, et al. Inhaled nitric oxide in acute respiratory distress syndrome: a pilot randomized controlled study. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1483–8.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Michael JR, Barton RG, Saffle JR, et al. Inhaled nitric oxide versus conventional therapy: effect on oxygenation in ARDS. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1372–80.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Solina AR, Ginsberg SH, Papp D, et al. Response to nitric oxide during adult cardiac surgery. J Investig Surg. 2002;15(1):5–14.CrossRefGoogle Scholar
  105. 105.
    Solina AR, Ginsberg SH, Papp D, et al. Dose response to nitric oxide in adult cardiac surgery patients. J Clin Anesth. 2001;13(4):281–6.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Bigatello LM, Hess D, Dennehy KC, Medoff BD, Hurford WE. Sildenafil can increase the response to inhaled nitric oxide. Anesthesiology. 2000;92(6):1827–9.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Dias-Junior CA, Montenegro MF, Florencio BC, Tanus-Santos JE. Sildenafil improves the beneficial haemodynamic effects of intravenous nitrite infusion during acute pulmonary embolism. Basic Clin Pharmacol Toxicol. 2008;103(4):374–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Suntharalingam J, Hughes RJ, Goldsmith K, et al. Acute haemodynamic responses to inhaled nitric oxide and intravenous sildenafil in distal chronic thromboembolic pulmonary hypertension (CTEPH). Vasc Pharmacol. 2007;46(6):449–55.CrossRefGoogle Scholar
  109. 109.
    Roberts JD Jr, Fineman JR, Morin FC 3rd, et al. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N Engl J Med. 1997;336(9):605–10.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Inhaled nitric oxide and hypoxic respiratory failure in infants with congenital diaphragmatic hernia. The Neonatal Inhaled Nitric Oxide Study Group (NINOS). Pediatrics. 1997;99(6):838–45.Google Scholar
  111. 111.
    Ardehali A, Hughes K, Sadeghi A, et al. Inhaled nitric oxide for pulmonary hypertension after heart transplantation. Transplantation. 2001;72(4):638–41.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Adhikari N, Granton JT. Inhaled nitric oxide for acute lung injury: no place for NO? JAMA. 2004;291(13):1629–31.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Paniagua MJ, Crespo-Leiro MG, Rodriguez JA, et al. Usefulness of nitric oxide inhalation for management of right ventricular failure after heart transplantation in patients with pretransplant pulmonary hypertension. Transplant Proc. 1999;31(6):2505–6.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Date H, Triantafillou AN, Trulock EP, Pohl MS, Cooper JD, Patterson GA. Inhaled nitric oxide reduces human lung allograft dysfunction. J Thorac Cardiovasc Surg. 1996;111(5):913–9.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Yamashita H, Akamine S, Sumida Y, et al. Inhaled nitric oxide attenuates apoptosis in ischemia-reperfusion injury of the rabbit lung. Ann Thorac Surg. 2004;78(1):292–7.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Meade MO, Granton JT, Matte-Martyn A, et al. A randomized trial of inhaled nitric oxide to prevent ischemia-reperfusion injury after lung transplantation. Am J Respir Crit Care Med. 2003;167(11):1483–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Wilson WC, Kapelanski DP, Benumof JL, Newhart JW 2nd, Johnson FW, Channick RN. Inhaled nitric oxide (40 ppm) during one-lung ventilation, in the lateral decubitus position, does not decrease pulmonary vascular resistance or improve oxygenation in normal patients. J Cardiothorac Vasc Anesth. 1997;11(2):172–6.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Ismail-Zade IA, Vuylsteke A, Ghosh S, Latimer RD. Inhaled nitric oxide and one-lung ventilation in the lateral decubitus position. J Cardiothorac Vasc Anesth. 1997;11(7):926–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Rocca GD, Coccia C, Pompei L, et al. Hemodynamic and oxygenation changes of combined therapy with inhaled nitric oxide and inhaled aerosolized prostacyclin. J Cardiothorac Vasc Anesth. 2001;15(2):224–7.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Rocca GD, Passariello M, Coccia C, et al. Inhaled nitric oxide administration during one-lung ventilation in patients undergoing thoracic surgery. J Cardiothorac Vasc Anesth. 2001;15(2):218–23.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Ghofrani HA, Voswinckel R, Reichenberger F, et al. Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension: a randomized prospective study. J Am Coll Cardiol. 2004;44(7):1488–96.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Michelakis E, Tymchak W, Lien D, Webster L, Hashimoto K, Archer S. Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circulation. 2002;105(20):2398–403.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Archer SL, Michelakis ED. Phosphodiesterase type 5 inhibitors for pulmonary arterial hypertension. N Engl J Med. 2009;361(19):1864–71.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Wharton J, Strange JW, Moller GM, et al. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med. 2005;172(1):105–13.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Galie N, Brundage BH, Ghofrani HA, et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009;119(22):2894–903.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Galie N, Ghofrani HA, Torbicki A, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353(20):2148–57.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116(3):238–48.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Atz AM, Wessel DL. Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology. 1999;91(1):307–10.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Boffini M, Sansone F, Ceresa F, et al. Role of oral sildenafil in the treatment of right ventricular dysfunction after heart transplantation. Transplant Proc. 2009;41(4):1353–6.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    De Santo LS, Mastroianni C, Romano G, et al. Role of sildenafil in acute posttransplant right ventricular dysfunction: successful experience in 13 consecutive patients. Transplant Proc. 2008;40(6):2015–8.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Ghofrani HA, Schermuly RT, Rose F, et al. Sildenafil for long-term treatment of nonoperable chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2003;167(8):1139–41.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Nagaya N, Sasaki N, Ando M, et al. Prostacyclin therapy before pulmonary thromboendarterectomy in patients with chronic thromboembolic pulmonary hypertension. Chest. 2003;123(2):338–43.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Jensen KW, Kerr KM, Fedullo PF, et al. Pulmonary hypertensive medical therapy in chronic thromboembolic pulmonary hypertension before pulmonary thromboendarterectomy. Circulation. 2009;120(13):1248–54.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Delcroix M, Lang I, Pepke-Zaba J, et al. Long-term outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. Circulation. 2016;133(9):859–71.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Lewis GD, Shah R, Shahzad K, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116(14):1555–62.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Andersen MJ, Ersbøll M, Axelsson A, et al. Sildenafil and diastolic dysfunction after acute myocardial infarction in patients with preserved ejection fraction: the Sildenafil and Diastolic Dysfunction After Acute Myocardial Infarction (SIDAMI) trial. Circulation. 2013;127(11):1200–8.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Borgdorff MAJ, Bartelds B, Dickinson MG, et al. Sildenafil treatment in established right ventricular dysfunction improves diastolic function and attenuates interstitial fibrosis independent from afterload. Am J Physiol Heart Circ Physiol. 2014;307(3):H361–9.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Guazzi M, Bandera F, Forfia P. Sildenafil and exercise capacity in heart failure. JAMA. 2013;310(4):432.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Shim JK, Choi YS, Oh YJ, Kim DH, Hong YW, Kwak YL. Effect of oral sildenafil citrate on intraoperative hemodynamics in patients with pulmonary hypertension undergoing valvular heart surgery. J Thorac Cardiovasc Surg. 2006;132(6):1420–5.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Califf RM, Adams KF, McKenna WJ, et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: the Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1997;134(1):44–54.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Vachiéry J-L, Adir Y, Barberà JA, et al. Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol. 2013;62(25 Suppl):D100–8.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Hambly N, Granton J. Riociguat for the treatment of pulmonary hypertension. Expert Rev Respir Med. 2015;9(6):679–95.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Ghofrani H-A, Humbert M, Langleben D, et al. Riociguat: mode of action and clinical development in pulmonary hypertension. Chest. 2017;151(2):468–80.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Ghofrani H-A, D’Armini AM, Grimminger F, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369(4):319–29.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Ghofrani H-A, Galiè N, Grimminger F, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369(4):330–40.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Galiè N, Müller K, Scalise A-V, Grünig E. PATENT PLUS: a blinded, randomised and extension study of riociguat plus sildenafil in pulmonary arterial hypertension. Eur Respir J. 2015;45(5):1314–22.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Dupuis J, Jasmin JF, Prie S, Cernacek P. Importance of local production of endothelin-1 and of the ET(B)Receptor in the regulation of pulmonary vascular tone. Pulm Pharmacol Ther. 2000;13(3):135–40.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Merkus D, Houweling B, Mirza A, Boomsma F, van den Meiracker AH, Duncker DJ. Contribution of endothelin and its receptors to the regulation of vascular tone during exercise is different in the systemic, coronary and pulmonary circulation. Cardiovasc Res. 2003;59(3):745–54.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    McGoon M, Gutterman D, Steen V, et al. Screening, early detection, and diagnosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004;126:14S–34S.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Galiè N, Corris PA, Frost A, et al. Updated treatment algorithm of pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D60–72.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Pulido T, Adzerikho I, Channick RN, et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med. 2013;369(9):809–18.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Aversa M, Porter S, Granton J. Comparative safety and tolerability of endothelin receptor antagonists in pulmonary arterial hypertension. Drug Saf. 2015;38(5):419–35.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Galiè N, Barberà JA, Frost AE, et al. Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med. 2015;373(9):834–44.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Buckley MS, Feldman JP. Nebulized milrinone use in a pulmonary hypertensive crisis. Pharmacotherapy. 2007;27(12):1763–6.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Lamarche Y, Perrault LP, Maltais S, Tetreault K, Lambert J, Denault AY. Preliminary experience with inhaled milrinone in cardiac surgery. Eur J Cardiothorac Surg. 2007;31(6):1081–7.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Urdaneta F, Lobato EB, Beaver T, et al. Treating pulmonary hypertension post cardiopulmonary bypass in pigs: milrinone vs. sildenafil analog. Perfusion. 2008;23(2):117–25.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Haraldsson s A, Kieler-Jensen N, Ricksten SE. The additive pulmonary vasodilatory effects of inhaled prostacyclin and inhaled milrinone in postcardiac surgical patients with pulmonary hypertension. Anesth Analg. 2001;93(6):1439–45, table of contentsPubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Lakshminrusimha S, Porta NF, Farrow KN, et al. Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn. Pediatr Crit Care Med. 2009;10(1):106–12.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Moncada S, Higgs EA. Prostaglandins in the pathogenesis and prevention of vascular disease. Blood Rev. 1987;1(2):141–5.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Granton J, Moric J. Pulmonary vasodilators – treating the right ventricle. Anesthesiol Clin. 2008;26(2):337–53. viiPubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Hoeper MM, Schwarze M, Ehlerding S, et al. Long-term treatment of primary pulmonary hypertension with aerosolized iloprost, a prostacyclin analogue. N Engl J Med. 2000;342(25):1866–70.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Olschewski H, Ghofrani HA, Schmehl T, et al. Inhaled iloprost to treat severe pulmonary hypertension. An uncontrolled trial. German PPH Study Group. Ann Intern Med. 2000;132(6):435–43.PubMedCrossRefGoogle Scholar
  163. 163.
    Fiser SM, Cope JT, Kron IL, et al. Aerosolized prostacyclin (epoprostenol) as an alternative to inhaled nitric oxide for patients with reperfusion injury after lung transplantation. J Thorac Cardiovasc Surg. 2001;121(5):981–2.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Langer F, Wendler O, Wilhelm W, Tscholl D, Schafers HJ. Treatment of a case of acute right heart failure by inhalation of iloprost, a long-acting prostacyclin analogue. Eur J Anaesthesiol. 2001;18(11):770–3.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Langer F, Wilhelm W, Lausberg H, Schafers HJ. [Iloprost and selective pulmonary vasodilation. Clinical results of intraoperative and postoperative inhalation of iloprost]. Anaesthesist. 2004;53(8):753–8.Google Scholar
  166. 166.
    Sablotzki A, Hentschel T, Gruenig E, et al. Hemodynamic effects of inhaled aerosolized iloprost and inhaled nitric oxide in heart transplant candidates with elevated pulmonary vascular resistance. Eur J Cardiothorac Surg. 2002;22(5):746–52.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Wensel R, Opitz CF, Ewert R, Bruch L, Kleber FX. Effects of iloprost inhalation on exercise capacity and ventilatory efficiency in patients with primary pulmonary hypertension. Circulation. 2000;101(20):2388–92.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Khan TA, Schnickel G, Ross D, et al. A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg. 2009;138(6):1417–24.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    McGinn K, Reichert MA. Comparison of inhaled nitric oxide versus inhaled epoprostenol for acute pulmonary hypertension following cardiac surgery. Ann Pharmacother. 2016;50(1):22–6.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Torbic H, Szumita PM, Anger KE, Nuccio P, LaGambina S, Weinhouse G. Inhaled epoprostenol vs inhaled nitric oxide for refractory hypoxemia in critically ill patients. J Crit Care. 2013;28(5):844–8.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Voswinckel R, Reichenberger F, Enke B, et al. Acute effects of the combination of sildenafil and inhaled treprostinil on haemodynamics and gas exchange in pulmonary hypertension. Pulm Pharmacol Ther. 2008;21(5):824–32.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Bund M, Henzler D, Walz R, Rossaint R, Piepenbrock S. Cardiopulmonary effects of intravenous prostaglandin E1 during experimental one-lung ventilation. Thorac Cardiovasc Surg. 2006;54(5):341–7.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Bund M, Henzler D, Walz R, Rossaint R, Piepenbrock S, Kuhlen R. [Aerosolized and intravenous prostacyclin during one-lung ventilation. Hemodynamic and pulmonary effects]. Anaesthesist. 2004;53(7):612–20.Google Scholar
  174. 174.
    Chen TL, Ueng TH, Huang CH, Chen CL, Huang FY, Lin CJ. Improvement of arterial oxygenation by selective infusion of prostaglandin E1 to ventilated lung during one-lung ventilation. Acta Anaesthesiol Scand. 1996;40(1):7–13.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Haraldsson A, Kieler-Jensen N, Wadenvik H, Ricksten SE. Inhaled prostacyclin and platelet function after cardiac surgery and cardiopulmonary bypass. Intensive Care Med. 2000;26(2):188–94.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Nielsen VG. Nitric oxide decreases coagulation protein function in rabbits as assessed by thromboelastography. Anesth Analg. 2001;92(2):320–3.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Hill LL, De Wet CJ, Jacobsohn E, Leighton BL, Tymkew H. Peripartum substitution of inhaled for intravenous prostacyclin in a patient with primary pulmonary hypertension. Anesthesiology. 2004;100(6):1603–5.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    De Wet CJ, Affleck DG, Jacobsohn E, et al. Inhaled prostacyclin is safe, effective, and affordable in patients with pulmonary hypertension, right heart dysfunction, and refractory hypoxemia after cardiothoracic surgery. J Thorac Cardiovasc Surg. 2004;127(4):1058–67.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Cornfield DN, Milla CE, Haddad IY, Barbato JE, Park SJ. Safety of inhaled nitric oxide after lung transplantation. J Heart Lung Transplant. 2003;22(8):903–7.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Elmi-Sarabi M, Deschamps A, Delisle S, et al. Aerosolized vasodilators for the treatment of pulmonary hypertension in cardiac surgical patients: a systematic review and meta-analysis. Anesth Analg. 2017;125(2):393–402; Publish Ahead of Print:1.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Perioperative MedicineKingston Health Sciences CentreKingstonCanada
  2. 2.Division of Respirology, Department of MedicineUniversity of Toronto and University Health Network, Mount Sinai Hospital, Women’s College HospitalTorontoCanada

Personalised recommendations