Pharmacology of the Airways

  • Cassandra BaileyEmail author
  • Paul J. Wojciechowski
  • William E. Hurford


Short-acting beta-2 adrenergic agonists are administered for the acute relief of bronchospasm, wheezing, and airflow obstruction. Long-acting beta-2 adrenergic agonists are for long-term control of symptoms. Inhaled anticholinergics are first-line therapy in COPD. They are useful for both maintenance therapy and in acute exacerbations. Inhaled corticosteroids are used to control inflammation in asthma and COPD. In asthma, they can be used as monotherapy. In COPD, they are used in conjunction with long-acting beta-adrenergic agonists and long-acting antimuscarinic antagonists. Systemic corticosteroids are used for the reduction of inflammation in asthma and COPD exacerbations and are not typically prescribed as maintenance therapy. Phosphodiesterase 4 inhibitors can be used in patients with severe COPD who have a history of bronchitis and exacerbations. Leukotriene modifiers, mast cell stabilizers, and methylxanthines are alternative therapies used in asthma when symptoms are not well-controlled on first-line therapy. Volatile and intravenous anesthetics provide a degree of bronchodilation that may be useful in treating intraoperative bronchoconstriction. Helium/oxygen mixtures, antihistamines, and magnesium sulfate are alternative therapies used when bronchospasm does not respond to conventional therapies.


Beta-2 agonists Inhaled anticholinergics Phosphodiesterase 4 inhibitors Leukotriene modifiers Mast cell stabilizers Methylxanthines Inhaled corticosteroids Treatment of COPD exacerbations Management of asthma 


  1. 1.
    Jordan D. Central nervous pathways and control of the airways. Respir Physiol. 2001;125(1–2):67–81.PubMedCrossRefGoogle Scholar
  2. 2.
    Lewis MJ, Short AL, Lewis KE. Autonomic nervous system control of the cardiovascular and respiratory systems in asthma. Respir Med. 2006;100(10):1688–705.PubMedCrossRefGoogle Scholar
  3. 3.
    Burwell DR, Jones JG. The airways and anaesthesia – I. Anatomy, physiology and fluid mechanics. Anaesthesia. 1996;51(9):849–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Canning BJ, Fischer A. Neural regulation of airway smooth muscle tone. Respir Physiol. 2001;125(1–2):113–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Barnes PJ. Pharmacology of airway smooth muscle. Am J Respir Crit Care Med. 1998;158(5):S123–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Lumb AB, Nunn JF. Nunn’s applied respiratory physiology. 6th ed. Edinburgh: Elsevier Butterworth Heinemann; 2005.Google Scholar
  7. 7.
    Jartti T. Asthma, asthma medication and autonomic nervous system dysfunction. Clin Physiol. 2001;21:260–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Johnson M. The beta-adrenoceptor. Am J Respir Crit Care Med. 1998;158(5 Pt 3):S146–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Widdicombe JG. Autonomic regulation. i-NANC/e-NANC. Am J Respir Crit Care Med. 1998;158(5 Pt 3):S171–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Drazen JM, Gaston B, Shore SA. Chemical regulation of pulmonary airway tone. Annu Rev Physiol. 1995;57:151–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Fanta CH. Asthma. N Engl J Med. 2009;360(10):1002–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Nelson HS. Beta-adrenergic bronchodilators. N Engl J Med. 1995;333(8):499–506.PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson M, Butchers PR, Coleman RA, et al. The pharmacology of salmeterol. Life Sci. 1993;52(26):2131–43.PubMedCrossRefGoogle Scholar
  14. 14.
    Drazen JM, Israel E, Boushey HA, et al. Comparison of regularly scheduled with as-needed use of albuterol in mild asthma. Asthma Clinical Research Network. N Engl J Med. 1996;335(12):841–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Israel E, Chinchilli VM, Ford JG, et al. Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet. 2004;364(9444):1505–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Israel E, Drazen JM, Liggett SB, et al. The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med. 2000;162(1):75–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Expert panel report 3 (EPR-3): guidelines for the diagnosis and management of asthma – summary report 2007. 2009. Accessed 29 Dec 2009.
  18. 18.
    Gibson PG, Powell H, Ducharme FM. Differential effects of maintenance long-acting beta-agonist and inhaled corticosteroid on asthma control and asthma exacerbations. J Allergy Clin Immunol. 2007;119(2):344–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Accessed on 30 June 2017.
  20. 20.
    Bengtsson B. Plasma concentration and side-effects of terbutaline. Eur J Respir Dis Suppl. 1984;134:231–5.PubMedGoogle Scholar
  21. 21.
    Teule GJ, Majid PA. Haemodynamic effects of terbutaline in chronic obstructive airways disease. Thorax. 1980;35(7):536–42.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wagner PD, Dantzker DR, Iacovoni VE, Tomlin WC, West JB. Ventilation-perfusion inequality in asymptomatic asthma. Am Rev Respir Dis. 1978;118(3):511–24.PubMedGoogle Scholar
  23. 23.
    Repsher LH, Anderson JA, Bush RK, et al. Assessment of tachyphylaxis following prolonged therapy of asthma with inhaled albuterol aerosol. Chest. 1984;85(1):34–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Georgopoulos D, Wong D, Anthonisen NR. Tolerance to beta 2-agonists in patients with chronic obstructive pulmonary disease. Chest. 1990;97(2):280–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM. The Salmeterol Multicenter Asthma Research Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest. 2006;129(1):15–26.PubMedCrossRefGoogle Scholar
  26. 26.
    Williams SJ, Winner SJ, Clark TJ. Comparison of inhaled and intravenous terbutaline in acute severe asthma. Thorax. 1981;36(8):629–31.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pierce RJ, Payne CR, Williams SJ, Denison DM, Clark TJ. Comparison of intravenous and inhaled terbutaline in the treatment of asthma. Chest. 1981;79(5):506–11.PubMedCrossRefGoogle Scholar
  28. 28.
    Spiteri MA, Millar AB, Pavia D, Clarke SW. Subcutaneous adrenaline versus terbutaline in the treatment of acute severe asthma. Thorax. 1988;43(1):19–23.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Flynn RA, Glynn DA, Kennedy MP. Anticholinergic treatment in airways diseases. Adv Ther. 2009;26(10):908–19.PubMedCrossRefGoogle Scholar
  30. 30.
    Karpel JP, Schacter EN, Fanta C, et al. A comparison of ipratropium and albuterol vs albuterol alone for the treatment of acute asthma. Chest. 1996;110(3):611–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Restrepo RD. A stepwise approach to management of stable COPD with inhaled pharmacotherapy: a review. Respir Care. 2009;54(8):1058–81.PubMedGoogle Scholar
  32. 32.
    Tashkin DP, Celli B, Senn S, et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359(15):1543–54.PubMedCrossRefGoogle Scholar
  33. 33.
    Frith PA, Thompson PJ, Ratnavadivel R, et al. Glycopyrronium once-daily significantly improves lung function and health status when combined with Salmeterol/fluticasone in patients with COPD: the GLISTEN study – a randomized controlled trial. Thorax. 2015;70:519–27.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kerstjens HA, Engel M, Dahl R, et al. Tiotropium in asthma poorly controlled with standard combination therapy. NEJM. 2012;367:1198–207.PubMedCrossRefGoogle Scholar
  35. 35.
    Singh S, Loke Y, Enright P, Furberg CD. Pro-arrhythmic and pro ischaemic effects of inhaled anticholinergic medications. Thorax. 2013;68:114–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Gal TJ, Suratt PM. Atropine and glycopyrrolate effects on lung mechanics in normal man. Anesth Analg. 1981;60(2):85–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Gal TJ, Suratt PM, Lu JY. Glycopyrrolate and atropine inhalation: comparative effects on normal airway function. Am Rev Respir Dis. 1984;129(5):871–3.PubMedCrossRefGoogle Scholar
  38. 38.
    Villetti G, Bergamaschi M, Bassani F, et al. Pharmacological assessment of the duration of action of glycopyrrolate vs tiotropium and ipratropium in guinea-pig and human airways. Br J Pharmacol. 2006;148(3):291–8.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Haddad EB, Patel H, Keeling JE, Yacoub MH, Barnes PJ, Belvisi MG. Pharmacological characterization of the muscarinic receptor antagonist, glycopyrrolate, in human and guinea-pig airways. Br J Pharmacol. 1999;127(2):413–20.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tzelepis G, Komanapolli S, Tyler D, Vega D, Fulambarker A. Comparison of nebulized glycopyrrolate and metaproterenol in chronic obstructive pulmonary disease. Eur Respir J. 1996;9(1):100–3.PubMedCrossRefGoogle Scholar
  41. 41.
    Sutherland ER, Martin RJ. Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma. J Allergy Clin Immunol. 2003;112(5):819–27; quiz 828.PubMedCrossRefGoogle Scholar
  42. 42.
    Fujimoto K, Kubo K, Yamamoto H, Yamaguchi S, Matsuzawa Y. Eosinophilic inflammation in the airway is related to glucocorticoid reversibility in patients with pulmonary emphysema. Chest. 1999;115(3):697–702.PubMedCrossRefGoogle Scholar
  43. 43.
    Pizzichini E, Pizzichini MM, Gibson P, et al. Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. Am J Respir Crit Care Med. 1998;158(5 Pt 1):1511–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Postma DS, Rabe KF. The asthma-COPD overlap syndrome. NEJM. 2015;373:1241–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Postma DS, Reddel HK, ten Hacken NHT, van den Berge M. Asthma and chronic obstructive pulmonary disease: similarities and differences. Clin Chest Med. 2014;35:143–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Chanez P, Bourdin A, Vachier I, Godard P, Bousquet J, Vignola AM. Effects of inhaled corticosteroids on pathology in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2004;1(3):184–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Suissa S, Ernst P, Benayoun S, Baltzan M, Cai B. Low-dose inhaled corticosteroids and the prevention of death from asthma. N Engl J Med. 2000;343(5):332–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Donahue JG, Weiss ST, Livingston JM, Goetsch MA, Greineder DK, Platt R. Inhaled steroids and the risk of hospitalization for asthma. JAMA. 1997;277(11):887–91.PubMedCrossRefGoogle Scholar
  49. 49.
    Calverley PM, Anderson JA, Celli B, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med. 2007;356(8):775–89.PubMedCrossRefGoogle Scholar
  50. 50.
    Barnes PJ. Molecular mechanisms of corticosteroids in allergic diseases. Allergy. 2001;56(10):928–36.PubMedCrossRefGoogle Scholar
  51. 51.
    Pujols L, Mullol J, Torrego A, Picado C. Glucocorticoid receptors in human airways. Allergy. 2004;59(10):1042–52.PubMedCrossRefGoogle Scholar
  52. 52.
    Glaab T, Taube C. Effects of inhaled corticosteroids in stable chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2011;24:15–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Pascoe S, Locantore N, Dransfield M, Barnes N, Pavord ID. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomized controlled trials. Lancet. 2015;3:435–42.PubMedGoogle Scholar
  54. 54.
    Singh S, Amin AV, Loke YK. Long-term use of inhaled corticosteroids and the risk of pneumonia in chronic obstructive pulmonary disease: a meta-analysis. Arch Intern Med. 2009;169(3):219–29.PubMedCrossRefGoogle Scholar
  55. 55.
    Crim C, Dransfield MT, Bourbeau J, Jones PW, Hanania NA, Mahler DA, Vestbo J, Wachtel A, Martinez FJ, Barnhart F, et al. Pneumonia risk with inhaled fluticasone furoate and vilanterol compared with vilanterol alone in patients with COPD. Ann Am Thorac Soc. 2015;12:27–34.PubMedCrossRefGoogle Scholar
  56. 56.
    deJong YP, Uil SM, Grotjohan HP, Postma DS, Kerstjens HA, van den Berg JW. Oral or IV prednisolone in the treatment of COPD exacerbations: a randomized controlled, double-blind study. Chest. 2007;132:1741–7.CrossRefGoogle Scholar
  57. 57.
    Niewoehner DE, Erbland ML, Deupree RH, et al. Effect of systemic glucocorticoids on exacerbations of chronic obstructive pulmonary disease. Department of Veterans Affairs Cooperative Study Group. N Engl J Med. 1999;340(25):1941–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Leuppi JD, et al. Short-term vs conventional glucocorticoid therapy in acute exacerbations of chronic obstructive pulmonary disease. The REDUCE randomized clinical trial. JAMA. 2013;309:2223–31.PubMedCrossRefGoogle Scholar
  59. 59.
    McEvoy CE, Niewoehner DE. Adverse effects of corticosteroid therapy for COPD. A critical review. Chest. 1997;111(3):732–43.PubMedCrossRefGoogle Scholar
  60. 60.
    Usery JB, Self TH, Muthiah MP, Finch CK. Potential role of leukotriene modifiers in the treatment of chronic obstructive pulmonary disease. Pharmacotherapy. 2008;28(9):1183–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Drazen JM, Israel E, O’Byrne PM. Drug therapy: treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med. 1999;340(3):197–206.PubMedCrossRefGoogle Scholar
  62. 62.
    Reiss TF, Chervinsky P, Dockhorn RJ, Shingo S, Seidenberg B, Edwards TB. Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma: a multicenter, randomized, double-blind trial. Montelukast Clinical Research Study Group. Arch Intern Med. 1998;158(11):1213–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Israel E, Rubin P, Kemp JP, et al. The effect of inhibition of 5-lipoxygenase by zileuton in mild-to-moderate asthma. Ann Intern Med. 1993;119(11):1059–66.PubMedCrossRefGoogle Scholar
  64. 64.
    Brabson JH, Clifford D, Kerwin E, et al. Efficacy and safety of low-dose fluticasone propionate compared with zafirlukast in patients with persistent asthma. Am J Med. 2002;113(1):15–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Malmstrom K, Rodriguez-Gomez G, Guerra J, et al. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma. A randomized, controlled trial. Montelukast/Beclomethasone Study Group. Ann Intern Med. 1999;130(6):487–95.PubMedCrossRefGoogle Scholar
  66. 66.
    Price DB, Hernandez D, Magyar P, et al. Randomised controlled trial of montelukast plus inhaled budesonide versus double dose inhaled budesonide in adult patients with asthma. Thorax. 2003;58(3):211–6.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bernstein IL. Cromolyn sodium. Chest. 1985;87(1 Suppl):68S–73.PubMedCrossRefGoogle Scholar
  68. 68.
    Guevara JP, Ducharme FM, Keren R, Nihtianova S, Zorc J. Inhaled corticosteroids versus sodium cromoglycate in children and adults with asthma. Cochrane Database Syst Rev. 2006;(2):CD003558.Google Scholar
  69. 69.
    Barnes PJ. Theophylline: new perspectives for an old drug. Am J Respir Crit Care Med. 2003;167(6):813–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Global Intiative for Asthma. 2009. Accessed 5 Jan 2010.
  71. 71.
    Global Initiative for Chronic Obstructive Lung Disease. 2009. Accessed 7 Jan 2010.
  72. 72.
    Aubier M, De Troyer A, Sampson M, Macklem PT, Roussos C. Aminophylline improves diaphragmatic contractility. N Engl J Med. 1981;305(5):249–52.PubMedCrossRefGoogle Scholar
  73. 73.
    Hatzelmann A, Morcillo EJ, Lungarello G, Adnot S, Sanjar S, Beume R, Schudt C, Tenor H. The preclinical pharmacology of roflumilast – a selective, oral phosphodiesterase inhibitor in development for chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2010;23:235–56.PubMedCrossRefGoogle Scholar
  74. 74.
    Beghe B, Rabe KF, Fabbri LM. Phosphodiesterase-4 inhibitor therapy for lung diseases. Am J Respir Crit Care Med. 2013;188:271–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Rooke GA, Choi JH, Bishop MJ. The effect of isoflurane, halothane, sevoflurane, and thiopental/nitrous oxide on respiratory system resistance after tracheal intubation. Anesthesiology. 1997;86(6):1294–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Cheng EY, Mazzeo AJ, Bosnjak ZJ, Coon RL, Kampine JP. Direct relaxant effects of intravenous anesthetics on airway smooth muscle. Anesth Analg. 1996;83(1):162–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Goff MJ, Arain SR, Ficke DJ, Uhrich TD, Ebert TJ. Absence of bronchodilation during desflurane anesthesia: a comparison to sevoflurane and thiopental. Anesthesiology. 2000;93(2):404–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Yamakage M. Direct inhibitory mechanisms of halothane on canine tracheal smooth muscle contraction. Anesthesiology. 1992;77(3):546–53.PubMedCrossRefGoogle Scholar
  79. 79.
    Yamakage M, Chen X, Tsujiguchi N, Kamada Y, Namiki A. Different inhibitory effects of volatile anesthetics on T- and L-type voltage-dependent Ca2+ channels in porcine tracheal and bronchial smooth muscles. Anesthesiology. 2001;94(4):683–93.PubMedCrossRefGoogle Scholar
  80. 80.
    Gold MI, Helrich M. Pulmonary mechanics during general anesthesia: V. Status asthmaticus. Anesthesiology. 1970;32(5):422–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Parnass SM, Feld JM, Chamberlin WH, Segil LJ. Status asthmaticus treated with isoflurane and enflurane. Anesth Analg. 1987;66(2):193–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Johnston RG, Noseworthy TW, Friesen EG, Yule HA, Shustack A. Isoflurane therapy for status asthmaticus in children and adults. Chest. 1990;97(3):698–701.PubMedCrossRefGoogle Scholar
  83. 83.
    Schwartz SH. Treatment of status asthmaticus with halothane. JAMA. 1984;251(20):2688–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Eames WO, Rooke GA, Wu RS, Bishop MJ. Comparison of the effects of etomidate, propofol, and thiopental on respiratory resistance after tracheal intubation. Anesthesiology. 1996;84(6):1307–11.PubMedCrossRefGoogle Scholar
  85. 85.
    Wanna HT, Gergis SD. Procaine, lidocaine, and ketamine inhibit histamine-induced contracture of guinea pig tracheal muscle in vitro. Anesth Analg. 1978;57(1):25–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Lin CC, Shyr MH, Tan PP, et al. Mechanisms underlying the inhibitory effect of propofol on the contraction of canine airway smooth muscle. Anesthesiology. 1999;91(3):750–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Brown RH, Wagner EM. Mechanisms of bronchoprotection by anesthetic induction agents: propofol versus ketamine. Anesthesiology. 1999;90(3):822–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Brown RH, Greenberg RS, Wagner EM. Efficacy of propofol to prevent bronchoconstriction: effects of preservative. Anesthesiology. 2001;94(5):851–5; discussion 856A.PubMedCrossRefGoogle Scholar
  89. 89.
    Yukioka H, Hayashi M, Terai T, Fujimori M. Intravenous lidocaine as a suppressant of coughing during tracheal intubation in elderly patients. Anesth Analg. 1993;77(2):309–12.PubMedCrossRefGoogle Scholar
  90. 90.
    Hamill JF, Bedford RF, Weaver DC, Colohan AR. Lidocaine before endotracheal intubation: intravenous or laryngotracheal? Anesthesiology. 1981;55(5):578–81.PubMedCrossRefGoogle Scholar
  91. 91.
    Maggiore SM, Richard JC, Abroug F, et al. A multicenter, randomized trial of noninvasive ventilation with helium-oxygen mixture in exacerbations of chronic obstructive lung disease. Crit Care Med. 2010;38(1):145–51.PubMedCrossRefGoogle Scholar
  92. 92.
    Lordan JL, Holgate ST. H1-antihistamines in asthma. Clin Allergy Immunol. 2002;17:221–48.PubMedGoogle Scholar
  93. 93.
    Richter K, Gronke L, Janicki S, Maus J, Jorres RA, Magnussen H. Effect of azelastine, montelukast, and their combination on allergen-induced bronchoconstriction in asthma. Pulm Pharmacol Ther. 2008;21(1):61–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Rowe BH, Bretzlaff JA, Bourdon C, Bota GW, Camargo CA Jr. Magnesium sulfate for treating exacerbations of acute asthma in the emergency department. Cochrane Database Syst Rev. 2000;(2):CD001490.Google Scholar
  95. 95.
    Blitz M, Blitz S, Hughes R, et al. Aerosolized magnesium sulfate for acute asthma: a systematic review. Chest. 2005;128(1):337–44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cassandra Bailey
    • 1
    Email author
  • Paul J. Wojciechowski
    • 1
  • William E. Hurford
    • 1
  1. 1.Department of AnesthesiologyUniversity of CincinnatiCincinnatiUSA

Personalised recommendations