Nonrespiratory Functions of the Lung

  • Amanda M. KleimanEmail author
  • Keith E. Littlewood


Pulmonary endothelial cells metabolize endogenous substances and xenobiotics via ectoenzymes on their luminal surface and caveolae as well as enzyme systems within the cytosol. Pulmonary metabolism results in the activation of several endogenous substances and medications of importance to the anesthesiologist. Pulmonary uptake is often not associated with metabolism, but still markedly affects pharmacokinetics by initially attenuating peak concentrations before ultimately returning the unchanged substance to the circulation. The lung’s ability to serve as a vascular reservoir is directly related to the capacitance of the pulmonary vessels. The lung serves as a physical filter, but this function may be compromised with high cardiac output and in several disease states. The respiratory epithelium’s functions include humidification and trapping of particles and pathogens. The airway surface film has antimicrobial capacity beyond its mechanical removal of debris from the airway.


Drug metabolism Drug activation Respiratory epithelium Antimicrobial defense Vascular reservoir Pulmonary uptake Pulmonary metabolism 


  1. 1.
    Major R. A history of medicine. Springfield: Thomas; 1954.Google Scholar
  2. 2.
    Lumb AB. The history of respiratory physiology. In: Lumb AB, editor. Nunn’s applied respiratory physiology. 6th ed. Oxford: Buttterworth-Heinemann; 2005.Google Scholar
  3. 3.
    Shoja MM, Tubbs RS. The history of anatomy in Persia. J Anat. 2007;210(4):359–78.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Simionescu M. Lung endothelium: structure-function correlates. In: Crystal RG, editor. Lung: scientific foundations. New York: Raven Press; 1991. p. 301–21.Google Scholar
  5. 5.
    Klein IK, Predescu DN, Sharma T, Knezevic I, Malik AB, Predescu S. Intersectin-2L regulates caveola endocytosis secondary to Cdc42-mediated actin polymerization. J Biol Chem. 2009;284(38):25953–61.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Parat M, Kwang WJ. The biology of caveolae: achievements and perspectives. In: International review of cell and molecular biology, vol. 273. Amsterdam: Academic; 2009. p. 117–62.Google Scholar
  7. 7.
    Ryan US, Ryan JW. Relevance of endothelial surface structure to the activity of vasoactive substances. Chest. 1985;88(4 Suppl):203S–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Ryan JW, Smith U. Metabolism of adenosine 5′-monophosphate during circulation through the lungs. Trans Assoc Am Phys. 1971;84:297–306.PubMedGoogle Scholar
  9. 9.
    Vane JR. The release and fate of vaso-active hormones in the circulation. Br J Pharmacol. 1969;35(2):209–42.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Dawidowicz ALP, Fornal EPD, Mardarowicz MPD, Fijalkowska APD. The role of human lungs in the biotransformation of propofol. Anesthesiology. 2000;93(4):992–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hiraoka H, Yamamoto K, Miyoshi S, et al. Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. Br J Clin Pharmacol. 2005;60(2):176–82.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    de Graaf IAM, Koster HJ. Cryopreservation of precision-cut tissue slices for application in drug metabolism research. Toxicol In Vitro. 2003;17(1):1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Klem C, Dasta JF, Reilley TE, Flancbaum LJ. Pulmonary extraction of dobutamine in critically ill surgical patients. Anesth Analg. 1995;81(2):287–91.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Hayashi Y, Sumikawa K, Yamatodani A, Kamibayashi T, Mammoto T, Kuro M. Quantitative analysis of pulmonary clearance of exogenous dopamine after cardiopulmonary bypass in humans. Anesth Analg. 1993;76(1):107–12.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Matot I, Pizov R. Pulmonary extraction and accumulation of lipid formulations of amphotericin B. Crit Care Med. 2000;28(7):2528–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Upton RN, Doolette DJ. Kinetic aspects of drug disposition in the lungs. Clin Exp Pharmacol Physiol. 1999;26(5–6):381–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Serabjit-Singh CJ, Nishio SJ, Philpot RM, Plopper CG. The distribution of cytochrome P-450 monooxygenase in cells of the rabbit lung: an ultrastructural immunocytochemical characterization. Mol Pharmacol. 1988;33(3):279–89.PubMedGoogle Scholar
  18. 18.
    Mizuguchi KA, Fox AA, Burch TM, Cohn LH, Fox JA. Tricuspid and mitral valve carcinoid disease in the setting of a patent foramen ovale. Anesth Analg. 2008;107(6):1819–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Pacifici GM, Franchi M, Bencini C, Repetti F, Di Lascio N, Muraro GB. Tissue distribution of drug-metabolizing enzymes in humans. Xenobiotica. 1988;18(7):849–56.PubMedCrossRefGoogle Scholar
  20. 20.
    Litterst CL, Mimnaugh EG, Reagan RL, Gram TE. Comparison of in vitro drug metabolism by lung, liver, and kidney of several common laboratory species. Drug Metab Dispos. 1975;3(4):259–65.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Taeger K, Weninger E, Schmelzer F, Adt M, Franke N, Peter K. Pulmonary kinetics of fentanyl and alfentanil in surgical patients. Br J Anaesth. 1988;61(4):425–34.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Waters CM, Krejcie TC, Avram MJ. Facilitated uptake of fentanyl, but not alfentanil, by human pulmonary endothelial cells. Anesthesiology. 2000;93(3):825–31.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Boer F, Bovill JG, Burm AG, Mooren RA. Uptake of sufentanil, alfentanil and morphine in the lungs of patients about to undergo coronary artery surgery. Br J Anaesth. 1992;68(4):370–5.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Boer F, Olofsen E, Bovill JG, et al. Pulmonary uptake of sufentanil during and after constant rate infusion. Br J Anaesth. 1996;76(2):203–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Davis ME, Mehendale HM. Absence of metabolism of morphine during accumulation by isolated perfused rabbit lung. Drug Metab Dispos. 1979;7(6):425–8.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Roerig DL, Kotrly KJ, Vucins EJ, Ahlf SB, Dawson CA, Kampine JP. First pass uptake of fentanyl, meperidine, and morphine in the human lung. Anesthesiology. 1987;67(4):466–72.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Persson MP, Wiklund L, Hartvig P, Paalzow L. Potential pulmonary uptake and clearance of morphine in postoperative patients. Eur J Clin Pharmacol. 1986;30(5):567–74.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Beaufort TM, Proost JH, Houwertjes MC, Roggeveld J, Wierda JM. The pulmonary first-pass uptake of five nondepolarizing muscle relaxants in the pig. Anesthesiology. 1999;90(2):477–83.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bertler A, Lewis DH, Lofstrom JB, Post C. In vivo lung uptake of lidocaine in pigs. Acta Anaesthesiol Scand. 1978;22(5):530–6.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Post C, Eriksdotter-Behm K. Dependence of lung uptake of lidocaine in vivo on blood pH. Acta Pharmacol Toxicol (Copenh). 1982;51(2):136–40.CrossRefGoogle Scholar
  31. 31.
    Krejcie TC, Avram MJ, Gentry WB, Niemann CU, Janowski MP, Henthorn TK. A recirculatory model of the pulmonary uptake and pharmacokinetics of lidocaine based on analysis of arterial and mixed venous data from dogs. J Pharmacokinet Biopharm. 1997;25(2):169–90.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hasegawa K, Yukioka H, Hayashi M, Tatekawa S, Fujimori M. Lung uptake of lidocaine during hyperoxia and hypoxia in the dog. Acta Anaesthesiol Scand. 1996;40(4):489–95.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sjostrand U, Widman B. Distribution of bupivacaine in the rabbit under normal and acidotic conditions. Acta Anaesthesiol Scand Suppl. 1973;50:1–24.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Irestedt L, Andreen M, Belfrage P, Fagerstrom T. The elimination of bupivacaine (Marcain) after short intravenous infusion in the dog: with special reference to the role played by the liver and lungs. Acta Anaesthesiol Scand. 1978;22(4):413–22.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Rothstein P, Cole JS, Pitt BR. Pulmonary extraction of [3H]bupivacaine: modification by dose, propranolol and interaction with [14C]5-hydroxytryptamine. J Pharmacol Exp Ther. 1987;240(2):410–4.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kietzmann D, Foth H, Geng WP, Rathgeber J, GundertRemy U, Kettler D. Transpulmonary disposition of prilocaine, mepivacaine, and bupivacaine in humans in the course of epidural anaesthesia. Acta Anaesthesiol Scand. 1995;39(7):885–90.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sharrock NE, Mather LE, Go G, Sculco TP. Arterial and pulmonary arterial concentrations of the enantiomers of bupivacaine after epidural injection in elderly patients. Anesth Analg. 1998;86(4):812–7.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Palazzo MG, Kalso EA, Argiras E, Madgwick R, Sear JW. First pass lung uptake of bupivacaine: effect of acidosis in an intact rabbit lung model. Br J Anaesth. 1991;67(6):759–63.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Chang DH, Ladd LA, Wilson KA, Gelgor L, Mather LE. Tolerability of large-dose intravenous levobupivacaine in sheep. Anesth Analg. 2000;91(3):671–9.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ohmura S, Kawada M, Ohta T, Yamamoto K, Kobayashi T. Systemic toxicity and resuscitation in bupivacaine-, levobupivacaine-, or ropivacaine-infused rats.[see comment]. Anesth Analg. 2001;93(3):743–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Ohmura S, Sugano A, Kawada M, Yamamoto K. Pulmonary uptake of ropivacaine and levobupivacaine in rabbits. Anesth Analg. 2003;97(3):893–7.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mather LE, Copeland SE, Ladd LA. Acute toxicity of local anesthetics: underlying pharmacokinetic and pharmacodynamic concepts [see comment]. Reg Anesth Pain Med. 2005;30(6):553–66.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Heavner JE. Let’s abandon blanket maximum recommended doses of local anesthetics [comment]. Reg Anesth Pain Med. 2004;29(6):524.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Rosenberg PH, Veering BT, Urmey WF. Maximum recommended doses of local anesthetics: a multifactorial concept [see comment]. Reg Anesth Pain Med. 2004;29(6):564–75; discussion 524.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Reynolds F. Maximum recommended doses of local anesthetics: a constant cause of confusion [comment]. Reg Anesth Pain Med. 2005;30(3):314–6.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Groban L. Central nervous system and cardiac effects from long-acting amide local anesthetic toxicity in the intact animal model. Reg Anesth Pain Med. 2003;28(1):3–11.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Mulroy MF. Systemic toxicity and cardiotoxicity from local anesthetics: incidence and preventive measures. Reg Anesth Pain Med. 2002;27(6):556–61.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Rosenblatt MA, Abel M, Fischer GW, Itzkovich CJ, Eisenkraft JB. Successful use of a 20% lipid emulsion to resuscitate a patient after a presumed bupivacaine-related cardiac arrest [see comment]. Anesthesiology. 2006;105(1):217–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Felice K, Schumann H. Intravenous lipid emulsion for local anesthetic toxicity: a review of the literature. J Med Toxicol. 2008;4(3):184–91.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Marwick PC, Levin AI, Coetzee AR. Recurrence of cardiotoxicity after lipid rescue from bupivacaine-induced cardiac arrest [see comment]. Anesth Analg. 2009;108(4):1344–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Roerig DL, Kotrly KJ, Dawson CA, Ahlf SB, Gualtieri JF, Kampine JP. First-pass uptake of verapamil, diazepam, and thiopental in the human lung. Anesth Analg. 1989;69(4):461–6.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Pedraz JL, Lanao JM, Hernandez JM, Dominguez-Gil A. The biotransformation kinetics of ketamine “in vitro” in rabbit liver and lung microsome fractions. Eur J Drug Metab Pharmacokinet. 1986;11(1):9–16.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Henthorn TK, Krejcie TC, Niemann CU, Enders-Klein C, Shanks CA, Avram MJ. Ketamine distribution described by a recirculatory pharmacokinetic model is not stereoselective. Anesthesiology. 1999;91(6):1733–43.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Mather LE, Selby DG, Runciman WB, McLean CF. Propofol: assay and regional mass balance in the sheep. Xenobiotica. 1989;19(11):1337–47.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kuipers JA, Boer F, Olieman W, Burm AG, Bovill JG. First-pass lung uptake and pulmonary clearance of propofol: assessment with a recirculatory indocyanine green pharmacokinetic model. Anesthesiology. 1999;91(6):1780–7.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Matot I, Neely CF, Katz RY, Neufeld GR. Pulmonary uptake of propofol in cats. Effect of fentanyl and halothane. Anesthesiology. 1993;78(6):1157–65.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Le Guellec C, Lacarelle B, Villard PH, Point H, Catalin J, Durand A. Glucuronidation of propofol in microsomal fractions from various tissues and species including humans: effect of different drugs. Anesth Analg. 1995;81(4):855–61.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Bulger EM, Maier RV. Lipid mediators in the pathophysiology of critical illness. Crit Care Med. 2000;28(4 Suppl):N27–36.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Upton RN, Ludbrook G. A physiologically based, recirculatory model of the kinetics and dynamics of propofol in man. Anesthesiology. 2005;103(2):344–52.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kazama T, Ikeda K, Morita K, Ikeda T, Kikura M, Sato S. Relation between initial blood distribution volume and propofol induction dose requirement [see comment]. Anesthesiology. 2001;94(2):205–10.PubMedCrossRefGoogle Scholar
  61. 61.
    Kazama T, Morita K, Ikeda T, Kurita T, Sato S. Comparison of predicted induction dose with predetermined physiologic characteristics of patients and with pharmacokinetic models incorporating those characteristics as covariates. Anesthesiology. 2003;98(2):299–305.PubMedCrossRefGoogle Scholar
  62. 62.
    Krejcie TC, Jacquez JA, Avram MJ, Niemann CU, Shanks CA, Henthorn TK. Use of parallel Erlang density functions to analyze first-pass pulmonary uptake of multiple indicators in dogs. J Pharmacokinet Biopharm. 1996;24(6):569–88.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang WB, Watts AB, Peters JI, Williams RO III. The impact of pulmonary disease on the fate of inhaled medicines- a review. Int J Phram. 2014;461:112–28.CrossRefGoogle Scholar
  64. 64.
    Sweeney TD, Skornik WA, Brain JD, Hatch V, Godleski JJ. Chronic bronchitis alters the pattern of aerosol deposition in the lung. Am J Respir Crit Care Med. 1995;151:482–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Patton JS, Brain JD, Davies LA, et al. The particle has landed- characterizing the fate of inhaled pharmaceuticals. J Aerosol Med Pulm Drug Deliv. 2010;23(Suppl 2):S71–87.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1:338–44.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Olsson B, Bodesson E, Borgstom L. Pulmonary drug metabolism, clearance, and absorption. In: Smyth HDC, Hickey AJ, editors. Controlled pulmonary drug delivery. 1st ed. New York: Springer; 2011.Google Scholar
  68. 68.
    Ryan JW. Processing of endogenous polypeptides by the lungs. Annu Rev Physiol. 1982;44:241–55.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Orfanos SE, Langleben D, Khoury J, et al. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in humans. Circulation. 1999;99(12):1593–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Skidgel RA. Bradykinin-degrading enzymes: structure, function, distribution, and potential roles in cardiovascular pharmacology. J Cardiovasc Pharmacol. 1992;20(Suppl 9):S4–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Chand N, Altura BM. Acetylcholine and bradykinin relax intrapulmonary arteries by acting on endothelial cells: role in lung vascular diseases. Science. 1981;213(4514):1376–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Skidgel RA, Erdos EG. Angiotensin converting enzyme (ACE) and neprilysin hydrolyze neuropeptides: a brief history, the beginning and follow-ups to early studies. Peptides. 2004;25(3):521–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Simke J, Graeme ML, Sigg EB. Bradykinin induced bronchoconstriction in guinea pigs and its modification by various agents. Arch Int Pharmacodyn Ther. 1967;165(2):291–301.PubMedGoogle Scholar
  74. 74.
    Collier HO. Humoral factors in bronchoconstriction. Sci Basis Med Annu Rev. 1968:308–35.Google Scholar
  75. 75.
    Suguikawa TR, Garcia CA, Martinez EZ, Vianna EO. Cough and dyspnea during bronchoconstriction: comparison of different stimuli. Cough. 2009;5:6.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Enseleit F, Hurlimann D, Luscher TF. Vascular protective effects of angiotensin converting enzyme inhibitors and their relation to clinical events. J Cardiovasc Pharmacol. 2001;37(Suppl 1):S21–30.PubMedCrossRefGoogle Scholar
  77. 77.
    Muntner P, Krousel-Wood M, Hyre AD, et al. Antihypertensive prescriptions for newly treated patients before and after the main antihypertensive and lipid-lowering treatment to prevent heart attack trial results and seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure guidelines [see comment]. Hypertension. 2009;53(4):617–23.PubMedCrossRefGoogle Scholar
  78. 78.
    Alabaster VA, Bakhle YS. Removal of 5-hydroxytryptamine in the pulmonary circulation of rat isolated lungs. Br J Pharmacol. 1970;40(3):468–82.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Gonmori K, Rao KS, Mehendale HM. Pulmonary synthesis of 5-hydroxytryptamine in isolated perfused rabbit and rat lung preparations. Exp Lung Res. 1986;11(4):295–305.PubMedCrossRefGoogle Scholar
  80. 80.
    Cook DR, Brandom BW. Enflurane, halothane, and isoflurane inhibit removal of 5-hydroxytryptamine from the pulmonary circulation. Anesth Analg. 1982;61(8):671–5.PubMedGoogle Scholar
  81. 81.
    Junod AF. Uptake, metabolism and efflux of 14 C-5-hydroxytryptamine in isolated perfused rat lungs. J Pharmacol Exp Ther. 1972;183(2):341–55.PubMedGoogle Scholar
  82. 82.
    Righi L, Volante M, Rapa I, Scagliotti GV, Papotti M. Neuro-endocrine tumours of the lung. A review of relevant pathological and molecular data. Virchows Arch. 2007;451(Suppl 1):S51–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Shah PM, Raney AA. Tricuspid valve disease. Curr Probl Cardiol. 2008;33(2):47–84.PubMedCrossRefGoogle Scholar
  84. 84.
    Sandmann H, Pakkal M, Steeds R. Cardiovascular magnetic resonance imaging in the assessment of carcinoid heart disease. Clin Radiol. 2009;64(8):761–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Bernheim AM, Connolly HM, Pellikka PA. Carcinoid heart disease. Curr Treat Options Cardiovasc Med. 2007;9(6):482–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Droogmans S, Cosyns B, D’Haenen H, et al. Possible association between 3, 4-methylenedioxymethamphetamine abuse and valvular heart disease. Am J Cardiol. 2007;100(9):1442–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Utsunomiya T, Krausz MM, Shepro D, Hechtman HB. Prostaglandin control of plasma and platelet 5-hydroxytryptamine in normal and embolized animals. Am J Phys. 1981;241(5):H766–71.Google Scholar
  88. 88.
    Stratmann G, Gregory GA. Neurogenic and humoral vasoconstriction in acute pulmonary thromboembolism [see comment]. Anesth Analg. 2003;97(2):341–54.PubMedCrossRefGoogle Scholar
  89. 89.
    Huval WV, Mathieson MA, Stemp LI, et al. Therapeutic benefits of 5-hydroxytryptamine inhibition following pulmonary embolism. Ann Surg. 1983;197(2):220–5.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Said SI. Metabolic functions of the pulmonary circulation. Circ Res. 1982;50(3):325–33.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Philpot RM, Andersson TB, Eling TE. Uptake, accumulation, and metabolism of chemicals by the lung. In: Bakhle YS, Vane JR, editors. Metabolic functions of the lung. New York: Marcel Dekker; 1977. p. 123–71.Google Scholar
  92. 92.
    Garcia JG, Noonan TC, Jubiz W, Malik AB. Leukotrienes and the pulmonary microcirculation. Am Rev Respir Dis. 1987;136(1):161–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987;237(4819):1171–6.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Haeggstrom JZ, Kull F, Rudberg PC, Tholander F, Thunnissen MMGM. Leukotriene A4 hydrolase. Prostaglandins Other Lipid Mediat. 2002;68–69:495–510.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Yang G, Chen G, Wang D. Effects of prostaglandins and leukotrienes on hypoxic pulmonary vasoconstriction in rats. J Tongji Med Univ. 2000;20(3):197–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Caironi P, Ichinose F, Liu R, Jones RC, Bloch KD, Zapol WM. 5-lipoxygenase deficiency prevents respiratory failure during ventilator-induced lung injury [see comment]. Am J Respir Crit Care Med. 2005;172(3):334–43.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Leitch AG. The role of leukotrienes in asthma. Ann Acad Med Singap. 1985;14(3):503–7.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Sprague RS, Stephenson AH, Dahms TE, Lonigro AJ. Proposed role for leukotrienes in the pathophysiology of multiple systems organ failure. Crit Care Clin. 1989;5(2):315–29.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Orfanos SE, Mavrommati I, Korovesi I, Roussos C. Pulmonary endothelium in acute lung injury: from basic science to the critically ill. Intensive Care Med. 2004;30(9):1702–14.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Huang SK, Peters-Golden M. Eicosanoid lipid mediators in fibrotic lung diseases: ready for prime time? Chest. 2008;133(6):1442–50.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Del Giudice MM, Pezzulo A, Capristo C, et al. Leukotriene modifiers in the treatment of asthma in children. Ther Adv Respir Dis. 2009;3(5):245–51.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    O’Byrne PM, Gauvreau GM, Murphy DM. Efficacy of leukotriene receptor antagonists and synthesis inhibitors in asthma. J Allergy Clin Immunol. 2009;124(3):397–403.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Tantisira KG, Drazen JM. Genetics and pharmacogenetics of the leukotriene pathway. J Allergy Clin Immunol. 2009;124(3):422–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Murphy RC, Gijon MA. Biosynthesis and metabolism of leukotrienes [erratum appears in Biochem J. 2007 Sep 15;406(3):527]. Biochem J. 2007;405(3):379–95.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Romano M. Lipid mediators: lipoxin and aspirin-triggered 15-epi-lipoxins. Inflamm Allergy Drug Targets. 2006;5(2):81–90.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Romano M, Recchia I, Recchiuti A. Lipoxin receptors. Sci World J. 2007;7:1393–412.CrossRefGoogle Scholar
  107. 107.
    Soyombo O, Spur BW, Lee TH. Effects of lipoxin A4 on chemotaxis and degranulation of human eosinophils stimulated by platelet-activating factor and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Allergy. 1994;49(4):230–4.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Raud J, Palmertz U, Dahlen SE, Hedqvist P. Lipoxins inhibit microvascular inflammatory actions of leukotriene B4. Adv Exp Med Biol. 1991;314:185–92.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Le Y, Li B, Gong W, et al. Novel pathophysiological role of classical chemotactic peptide receptors and their communications with chemokine receptors. Immunol Rev. 2000;177:185–94.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Colgan SP, Serhan CN, Parkos CA, Delp-Archer C, Madara JL. Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers. J Clin Invest. 1993;92(1):75–82.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Brezinski ME, Gimbrone MA Jr, Nicolaou KC, Serhan CN. Lipoxins stimulate prostacyclin generation by human endothelial cells. FEBS Lett. 1989;245(1–2):167–72.PubMedCrossRefGoogle Scholar
  112. 112.
    Wenzel SE, Busse WW, The National Heart, Lung, Blood Institute’s Severe Asthma Research Program. Severe asthma: lessons from the Severe Asthma Research Program. J Allergy Clin Immunol. 2007;119(1):14–21; quiz 22–13.PubMedCrossRefGoogle Scholar
  113. 113.
    Vachier I, Bonnans C, Chavis C, et al. Severe asthma is associated with a loss of LX4, an endogenous anti-inflammatory compound. J Allergy Clin Immunol. 2005;115(1):55–60.PubMedCrossRefGoogle Scholar
  114. 114.
    Levy BD, Bonnans C, Silverman ES, et al. Diminished lipoxin biosynthesis in severe asthma. Am J Respir Crit Care Med. 2005;172(7):824–30.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kupczyk M, Antczak A, Kuprys-Lipinska I, Kuna P. Lipoxin A4 generation is decreased in aspirin-sensitive patients in lysine-aspirin nasal challenge in vivo model. Allergy. 2009;64(12):1746–52.PubMedCrossRefGoogle Scholar
  116. 116.
    Van Hove CL, Maes T, Joos GF, Tournoy KG. Chronic inflammation in asthma: a contest of persistence vs. resolution. Allergy. 2008;63(9):1095–109.PubMedCrossRefGoogle Scholar
  117. 117.
    Bonnans C, Levy BD. Lipid mediators as agonists for the resolution of acute lung inflammation and injury. Am J Respir Cell Mol Biol. 2007;36(2):201–5.PubMedCrossRefGoogle Scholar
  118. 118.
    Serhan CN. Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? Prostaglandins. 1997;53(2):107–37.PubMedCrossRefGoogle Scholar
  119. 119.
    Ramalho TC, Rocha MVJ, da Cunha EFF, Freitas MP. The search for new COX-2 inhibitors: a review of 2002–2008 patents. Expert Opin Ther Pat. 2009;19(9):1193–228.PubMedCrossRefGoogle Scholar
  120. 120.
    Grosser T. Variability in the response to cyclooxygenase inhibitors: toward the individualization of nonsteroidal anti-inflammatory drug therapy. J Investig Med. 2009;57(6):709–16.PubMedCrossRefGoogle Scholar
  121. 121.
    Funk CD, FitzGerald GA. COX-2 inhibitors and cardiovascular risk. J Cardiovasc Pharmacol. 2007;50(5):470–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Frangos JA, Eskin SG, McIntire LV, Ives CL. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985;227(4693):1477–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Eling TE, Ally AI. Pulmonary biosynthesis and metabolism of prostaglandins and related substances. Environ Health Perspect. 1984;55:159–68.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Robinson C, Hardy CC, Holgate ST. Pulmonary synthesis, release and metabolism of prostaglandins. J Allergy Clin Immunol. 1985;76(2 Pt 2):265–71.PubMedCrossRefGoogle Scholar
  125. 125.
    McGiff JC, Terragno NA, Strand JC, Lee JB, Lonigro AJ, Ng KK. Selective passage of prostaglandins across the lung. Nature. 1969;223(5207):742–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Dusting GJ, Moncada S, Vane JR. Recirculation of prostacyclin (PGI2) in the dog. Br J Pharmacol. 1978;64(2):315–20.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Gardiner PJ. Eicosanoids and airway smooth muscle. Pharmacol Ther. 1989;44(1):1–62.PubMedCrossRefGoogle Scholar
  128. 128.
    Regner KR, Connolly HM, Schaff HV, Albright RC. Acute renal failure after cardiac surgery for carcinoid heart disease: incidence, risk factors, and prognosis. Am J Kidney Dis. 2005;45(5):826–32.PubMedCrossRefGoogle Scholar
  129. 129.
    Zeldin DC, Foley J, Ma J, et al. CYP2J subfamily P450s in the lung: expression, localization, and potential functional significance. Mol Pharmacol. 1996;50(5):1111–7.PubMedGoogle Scholar
  130. 130.
    Salvail D, Dumoulin M, Rousseau E. Direct modulation of tracheal cl – channel activity by 5, 6- and 11, 12-EET. Am J Phys. 1998;275(3 Pt 1):L432–41.Google Scholar
  131. 131.
    Birks EK, Bousamra M, Presberg K, Marsh JA, Effros RM, Jacobs ER. Human pulmonary arteries dilate to 20-HETE, an endogenous eicosanoid of lung tissue. Am J Phys. 1997;272(5 Pt 1):L823–9.Google Scholar
  132. 132.
    Jacobs ER, Zeldin DC. The lung HETEs (and EETs) up. Am J Physiol Heart Circ Physiol. 2001;280(1):H1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Sirois P, Gutkowska J. Atrial natriuretic factor immunoreactivity in human fetal lung tissue and perfusates. Hypertension. 1988;11(2 Pt 2):I62–5.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Di Nardo P, Peruzzi G. Physiology and pathophysiology of atrial natriuretic factor in lungs. Can J Cardiol. 1992;8(5):503–8.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Turrin M, Gillis CN. Removal of atrial natriuretic peptide by perfused rabbit lungs in situ. Biochem Biophys Res Commun. 1986;140(3):868–73.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Tomlinson JW, Walker EA, Bujalska IJ, et al. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004;25(5):831–66.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Garbrecht MR, Klein JM, Schmidt TJ, Snyder JM. Glucocorticoid metabolism in the human fetal lung: implications for lung development and the pulmonary surfactant system. Biol Neonate. 2006;89(2):109–19.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Baker RW, Walker BR, Shaw RJ, et al. Increased cortisol: cortisone ratio in acute pulmonary tuberculosis. Am J Respir Crit Care Med. 2000;162(5):1641–7.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Huang CH, Huang HH, Chen TL, Wang MJ. Perioperative changes of plasma endothelin-1 concentrations in patients undergoing cardiac valve surgery. Anaesth Intensive Care. 1996;24(3):342–7.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Dupuis J, Cernacek P, Tardif JC, et al. Reduced pulmonary clearance of endothelin-1 in pulmonary hypertension. Am Heart J. 1998;135(4):614–20.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Drinker CK, Churchill ED, Ferry RM. The volume of blood in the heart and lungs. Am J Phys. 1926;77(3):590–622.CrossRefGoogle Scholar
  142. 142.
    Campbell I, Waterhouse J. Fluid balance and non-respiratory functions of the lung. Anaesth Intensive Care Med. 2005;6(11):370–1.CrossRefGoogle Scholar
  143. 143.
    Cotter G, Metra M, Milo-Cotter O, Dittrich HC, Gheorghiade M. Fluid overload in acute heart failure – re-distribution and other mechanisms beyond fluid accumulation. Eur J Heart Fail. 2008;10(2):165–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Jules-Elysee K, Blanck TJJ, Catravas JD, et al. Angiotensin-converting enzyme activity: a novel way of assessing pulmonary changes during total knee arthroplasty. Anesth Analg. 2004;99(4):1018–23.PubMedCrossRefGoogle Scholar
  145. 145.
    Lovering AT, Stickland MK, Kelso AJ, Eldridge MW. Direct demonstration of 25- and 50-microm arteriovenous pathways in healthy human and baboon lungs. Am J Physiol Heart Circ Physiol. 2007;292(4):H1777–81.PubMedCrossRefGoogle Scholar
  146. 146.
    Lovering AT, Haverkamp HC, Romer LM, Hokanson JS, Eldridge MW. Transpulmonary passage of 99mTc macroaggregated albumin in healthy humans at rest and during maximal exercise. J Appl Physiol. 2009;106(6):1986–92.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Abrams GA, Rose K, Fallon MB, et al. Hepatopulmonary syndrome and venous emboli causing intracerebral hemorrhages after liver transplantation: a case report. Transplantation. 1999;68(11):1809–11.PubMedCrossRefGoogle Scholar
  148. 148.
    Colohan AR, Perkins NA, Bedford RF, Jane JA. Intravenous fluid loading as prophylaxis for paradoxical air embolism. J Neurosurg. 1985;62(6):839–42.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Breeze RG, Wheeldon EB. The cells of the pulmonary airways. Am Rev Respir Dis. 1977;116(4):705–77.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Rogers DF. The airway goblet cell. Int J Biochem Cell Biol. 2003;35(1):1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Huffmyer JL, Littlewood KE, Nemergut EC. Perioperative management of the adult with cystic fibrosis. Anesth Analg. 2009;109(6):1949–61.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Nadel JA. Neural control of airway submucosal gland secretion. Eur J Respir Dis Suppl. 1983;128(Pt 1):322–6.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Reid L. Measurement of the bronchial mucous gland layer: a diagnostic yardstick in chronic bronchitis. Thorax. 1960;15:132–41.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Gallagher JT, Kent PW, Passatore M, Phipps RJ, Richardson PS. The composition of tracheal mucus and the nervous control of its secretion in the cat. Proc R Soc Lond B Biol Sci. 1975;192(1106):49–76.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Heidsiek JG, Hyde DM, Plopper CG, St George JA. Quantitative histochemistry of mucosubstance in tracheal epithelium of the macaque monkey. J Histochem Cytochem. 1987;35(4):435–42.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Evans CM, Williams OW, Tuvim MJ, et al. Mucin is produced by clara cells in the proximal airways of antigen-challenged mice. Am J Respir Cell Mol Biol. 2004;31(4):382–94.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Reynolds SD, Malkinson AM. Clara cell: progenitor for the bronchiolar epithelium. Int J Biochem Cell Biol. 2009;42(1):1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Boers JE, Ambergen AW, Thunnissen FB. Number and proliferation of clara cells in normal human airway epithelium. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1585–91.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Krishnaswamy G, Ajitawi O, Chi DS. The human mast cell: an overview. Methods Mol Biol. 2006;315:13–34.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Taube C, Stassen M. Mast cells and mast cell-derived factors in the regulation of allergic sensitization. Chem Immunol Allergy. 2008;94:58–66.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Peters A, Veronesi B, Calderon-Garciduenas L, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol [Electronic Resource]. 2006;3:13.CrossRefGoogle Scholar
  162. 162.
    Jakubzick C, Tacke F, Llodra J, van Rooijen N, Randolph GJ. Modulation of dendritic cell trafficking to and from the airways. J Immunol. 2006;176(6):3578–84.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev. 2002;82(3):569–600.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Matthay MA, Clerici C, Saumon G. Invited review: active fluid clearance from the distal air spaces of the lung. J Appl Physiol. 2002;93(4):1533–41.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Dobbs LG, Johnson MD. Alveolar epithelial transport in the adult lung. Respir Physiol Neurobiol. 2007;159:283–300.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. Regulation of surfactant secretion in alveolar type II cells. Am J Physiol Lung Cell Mol Physiol. 2007;293(2):L259–71.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Weaver TE, Conkright JJ. Function of surfactant proteins B and C. Annu Rev Physiol. 2001;63:555–78.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Ungaro F, d’Angelo I, Miro A, La Rotonda MI, Quaglia F. Engineered PLGA nano- and micro-carriers for pulmonary delivery: challenges and promises. J Pharm Pharmacol. 2012;64:1217–35.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Wanner A, Salathe M, O’Riordan TG. Mucociliary clearance in the airways. Am J Respir Crit Care Med. 1996;154(6 Pt 1):1868–902.PubMedCrossRefGoogle Scholar
  170. 170.
    Boucher RC. Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med. 2007;261(1):5–16.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    McFadden ER Jr. Heat and water exchange in human airways. Am Rev Respir Dis. 1992;146(5 Pt 2):S8–10.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Crouch E, Wright JR. Surfactant proteins a and d and pulmonary host defense. Annu Rev Physiol. 2001;63:521–54.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Wu H, Kuzmenko A, Wan S, et al. Surfactant proteins a and D inhibit the growth of gram-negative bacteria by increasing membrane permeability [see comment]. J Clin Invest. 2003;111(10):1589–602.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Wright JR. Pulmonary surfactant: a front line of lung host defense [comment]. J Clin Invest. 2003;111(10):1453–5.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Hamann KJ, Dorscheid DR, Ko FD, et al. Expression of Fas (CD95) and FasL (CD95L) in human airway epithelium. Am J Respir Cell Mol Biol. 1998;19:537–42.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Fine A, Anderson NL, Rothstein TL, Williams MC, Gochuico BR. Fas expression in pulmonary alveolar type II cells. Am J Phys. 1997;273:L64_L71.Google Scholar
  177. 177.
    Muzio M, Salvesen GS, Dixit VM. FLICE induced apoptosis in a cell-free system. Cleavage of caspase zymogens. J Biol Chem. 1997;272:2952–6.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science. 1995;270:1189–92.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Wadsworth SJ, Atsuta R, McIntyre JO, Hackett TL, Singhera GK, Dorscheid DR. IL-13 and T(H)2 cytokine exposure triggers matrix metalloproteinase 7-mediated Fas ligand cleavage from bronchial epithelial cells. J Allergy Clin Immunol. 2011;126(2):366–74, 374 e1–8.CrossRefGoogle Scholar
  180. 180.
    Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol. 2006;117:979–87.PubMedCrossRefGoogle Scholar
  181. 181.
    Bals R, Hiemstra PS. Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J. 2004;23:327–33.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Mio T, Romberger DJ, Thompson AB, Robbins RA, Heires A, Rennard SI. Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. Am J Respir Crit Care Med. 1997;155:1770–6.PubMedCrossRefGoogle Scholar
  183. 183.
    Chung KF. Cytokines in chronic obstructive pulmonary disease. Eur Respir J. 2001;34(Suppl):50s–9s.CrossRefGoogle Scholar
  184. 184.
    Russo RG, Liotta LA, Thorgeirsson U, Brundage R, Schiffmann E. Polymorphonuclear leukocyte migration through human amnion membrane. J Cell Biol. 1981;91:459–67.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Kao YJ, Piedra PA, Larsen GL, Colasurdo GN. Induction and regulation of nitric oxide synthase in airway epithelial cells by respiratory syncytial virus. Am J Respir Crit Care Med. 2001;163:532–9.PubMedCrossRefGoogle Scholar
  186. 186.
    Zheng S, De SBP, Choudhary S, et al. Impaired innate host defense causes susceptibility to respiratory virus infections in cystic fibrosis. Immunity. 2003;18:619–30.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations