Anesthesia for Esophageal Surgery

  • Randal S. BlankEmail author
  • Stephen R. Collins
  • Julie L. Huffmyer
  • J. Michael Jaeger


Surgical procedures involving the esophagus are performed for a wide array of elective and emergent indications. Esophageal surgeries may be performed for malignant or nonmalignant lesions or abnormalities and may involve various combinations of open or minimally invasive procedures via the neck, abdomen, and thorax and most recently via endoscopic approaches. Patients with severe esophageal disease may be at elevated risk of aspiration and anesthetic management should reflect an appreciation of this risk. For larger incisional approaches, particularly transthoracic procedures, pain control is of paramount importance; thoracic epidural analgesia remains the gold standard for such patients and procedures although alternative approaches such as paravertebral blockade may provide equivalent analgesia for some procedures. Patients undergoing major transthoracic esophageal surgeries, particularly esophagectomy, are at elevated risk for major morbidity, especially pulmonary complications and anastomotic failure and leak. Preoperative optimization of such patients should be a priority for the perioperative physician and may include programs designed to treat underlying comorbidities, optimize nutrition, improve inspiratory muscle function, and prevent and treat anemia. Additional perioperative efforts should be made to optimize pain control, avoid iatrogenic fluid overload, employ lung-protective ventilation, and facilitate early extubation and mobilization. Early removal of gastric tubes and oral enteral feeding remain controversial and require more study.


Esophagus Esophageal surgery Esophagectomy Transhiatal esophagectomy Transthoracic esophagectomy Three-hole esophagectomy Ivor Lewis esophagectomy McKeown esophagectomy Minimally invasive esophagectomy Robotic esophagectomy Anastomosis Anastomotic leak Anastomotic failure Gastroesophageal reflux Hiatal hernia Paraesophageal hernia Fundoplication Esophageal perforation Esophageal rupture Achalasia Esophagomyotomy Tracheoesophageal fistula Esophageal diverticula Esophageal cancer Gastric conduit Pain control Epidural analgesia Aspiration Cricoid pressure Fluid management Esophagoscopy Nissen fundoplication Belsey fundoplication Collis gastroplasty Pulmonary complications 



Acute lung injury


Acute respiratory distress syndrome


Chronic obstructive pulmonary disease


Computerized tomography


Chest X-ray (radiograph)


Double-lumen endotracheal tube(s)






Enhanced recovery after surgery


Endoscopic ultrasound


Goal-directed fluid therapy


Gastroesophageal reflux disease




Lumbar epidural analgesia


Lower esophageal sphincter


Left ventricular end-diastolic volume index


Minimally invasive esophagectomy


Magnetic resonance imaging


Nasogastric tube


One-lung ventilation


Patient-controlled analgesia


Positive end-expiratory pressure


Positron emission tomography


Paraesophageal hernia(s)


Postoperative nausea and vomiting


Paravertebral block


Single-lumen endotracheal tube(s)


Stroke volume variation


Thoracic epidural analgesia


Tracheoesophageal fistula


Transhiatal esophagectomy


Transthoracic esophagectomy


Upper esophageal sphincter

Supplementary material


  1. 1.
    Rickenbacher N, Kotter T, Kochen MM, Scherer M, Blozik E. Fundoplication versus medical management of gastroesophageal reflux disease: systematic review and meta-analysis. Surg Endosc. 2014;28(1):143–55.CrossRefGoogle Scholar
  2. 2.
    Garg SK, Gurusamy KS. Laparoscopic fundoplication surgery versus medical management for gastro-oesophageal reflux disease (GORD) in adults. Cochrane Database Syst Rev. 2015;(11):CD003243.Google Scholar
  3. 3.
    Fein M, Ritter MP, DeMeester TR, et al. Role of the lower esophageal sphincter and hiatal hernia in the pathogenesis of gastroesophageal reflux disease. J Gastrointest Surg. 1999;3(4):405–10.CrossRefGoogle Scholar
  4. 4.
    Skinner DB. Hernias (hiatal, traumatic, and congenital). 4th ed. Philadelphia: W.B. Saunders; 1985.Google Scholar
  5. 5.
    Halpin VJ, Soper NJ. Paraesophageal hernia. Curr Treat Options Gastroenterol. 2001;4(1):83–8.CrossRefGoogle Scholar
  6. 6.
    Tian ZC, Wang B, Shan CX, Zhang W, Jiang DZ, Qiu M. A meta-analysis of randomized controlled trials to compare long-term outcomes of Nissen and Toupet fundoplication for gastroesophageal reflux disease. PLoS One. 2015;10(6):e0127627.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Testoni PA, Mazzoleni G, Testoni SG. Transoral incisionless fundoplication for gastro-esophageal reflux disease: techniques and outcomes. World J Gastrointest Pharmacol Ther. 2016;7(2):179–89.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Owen B, Simorov A, Siref A, Shostrom V, Oleynikov D. How does robotic anti-reflux surgery compare with traditional open and laparoscopic techniques: a cost and outcomes analysis. Surg Endosc. 2014;28(5):1686–90.CrossRefGoogle Scholar
  9. 9.
    Yao G, Liu K, Fan Y. Robotic Nissen fundoplication for gastroesophageal reflux disease: a meta-analysis of prospective randomized controlled trials. Surg Today. 2014;44(8):1415–23.CrossRefGoogle Scholar
  10. 10.
    Dassinger MS, Torquati A, Houston HL, Holzman MD, Sharp KW, Richards WO. Laparoscopic fundoplication: 5-year follow-up. Am Surg. 2004;70(8):691–4; discussion 694–5Google Scholar
  11. 11.
    Cowgill SM, Arnaoutakis D, Villadolid D, et al. Results after laparoscopic fundoplication: does age matter? Am Surg. 2006;72(9):778–83; discussion 783–4Google Scholar
  12. 12.
    Ritter MP, Peters JH, DeMeester TR, et al. Treatment of advanced gastroesophageal reflux disease with Collis gastroplasty and Belsey partial fundoplication. Arch Surg. 1998;133(5):523–8; discussion 528–9CrossRefGoogle Scholar
  13. 13.
    Lugaresi M, Mattioli B, Perrone O, Daddi N, Di Simone MP, Mattioli S. Results of left thoracoscopic Collis gastroplasty with laparoscopic Nissen fundoplication for the surgical treatment of true short oesophagus in gastro-oesophageal reflux disease and type III–IV hiatal hernia. Eur J Cardiothorac Surg. 2016;49(1):e22–30.CrossRefGoogle Scholar
  14. 14.
    Patel HJ, Tan BB, Yee J, Orringer MB, Iannettoni MD. A 25-year experience with open primary transthoracic repair of paraesophageal hiatal hernia. J Thorac Cardiovasc Surg. 2004;127(3):843–9.CrossRefGoogle Scholar
  15. 15.
    Gangopadhyay N, Perrone JM, Soper NJ, et al. Outcomes of laparoscopic paraesophageal hernia repair in elderly and high-risk patients. Surgery. 2006;140(4):491–8; discussion 498–9CrossRefGoogle Scholar
  16. 16.
    Targarona EM, Grisales S, Uyanik O, Balague C, Pernas JC, Trias M. Long-term outcome and quality of life after laparoscopic treatment of large paraesophageal hernia. World J Surg. 2013;37(8):1878–82.CrossRefGoogle Scholar
  17. 17.
    Bagheri SC, Stockmaster N, Delgado G, et al. Esophageal rupture with the use of the Combitube: report of a case and review of the literature. J Oral Maxillofac Surg. 2008;66(5):1041–4.CrossRefGoogle Scholar
  18. 18.
    Harrison EE, Nord HJ, Beeman RW. Esophageal perforation following use of the esophageal obturator airway. Ann Emerg Med. 1980;9(1):21–5.CrossRefGoogle Scholar
  19. 19.
    Biancari F, Saarnio J, Mennander A, et al. Outcome of patients with esophageal perforations: a multicenter study. World J Surg. 2014;38(4):902–9.CrossRefGoogle Scholar
  20. 20.
    Khan AZ, Strauss D, Mason RC. Boerhaave’s syndrome: diagnosis and surgical management. Surgeon. 2007;5(1):39–44.CrossRefGoogle Scholar
  21. 21.
    Nesbitt JC, Sawyers JL. Surgical management of esophageal perforation. Am Surg. 1987;53(4):183–91.Google Scholar
  22. 22.
    Han SY, McElvein RB, Aldrete JS, Tishler JM. Perforation of the esophagus: correlation of site and cause with plain film findings. AJR Am J Roentgenol. 1985;145(3):537–40.CrossRefGoogle Scholar
  23. 23.
    Bhatia P, Fortin D, Inculet RI, Malthaner RA. Current concepts in the management of esophageal perforations: a twenty-seven year Canadian experience. Ann Thorac Surg. 2011;92(1):209–15.CrossRefGoogle Scholar
  24. 24.
    Minnich DJ, Yu P, Bryant AS, Jarrar D, Cerfolio RJ. Management of thoracic esophageal perforations. Eur J Cardiothorac Surg. 2011;40(4):931–7.Google Scholar
  25. 25.
    Shaker H, Elsayed H, Whittle I, Hussein S, Shackcloth M. The influence of the “golden 24-h rule” on the prognosis of oesophageal perforation in the modern era. Eur J Cardiothorac Surg. 2010;38(2):216–22.CrossRefGoogle Scholar
  26. 26.
    Seo YD, Lin J, Chang AC, Orringer MB, Lynch WR, Reddy RM. Emergent esophagectomy for esophageal perforations: a safe option. Ann Thorac Surg. 2015;100(3):905–9.CrossRefGoogle Scholar
  27. 27.
    Abbas G, Schuchert MJ, Pettiford BL, et al. Contemporaneous management of esophageal perforation. Surgery. 2009;146(4):749–55; discussion 755–6CrossRefGoogle Scholar
  28. 28.
    Vogel SB, Rout WR, Martin TD, Abbitt PL. Esophageal perforation in adults: aggressive, conservative treatment lowers morbidity and mortality. Ann Surg. 2005;241(6):1016–21;discussion 1021–3CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fischer A, Thomusch O, Benz S, von Dobschuetz E, Baier P, Hopt UT. Nonoperative treatment of 15 benign esophageal perforations with self-expandable covered metal stents. Ann Thorac Surg. 2006;81(2):467–72.CrossRefGoogle Scholar
  30. 30.
    Gelbmann CM, Ratiu NL, Rath HC, et al. Use of self-expandable plastic stents for the treatment of esophageal perforations and symptomatic anastomotic leaks. Endoscopy. 2004;36(8):695–9.CrossRefGoogle Scholar
  31. 31.
    Siersema PD, Homs MY, Haringsma J, Tilanus HW, Kuipers EJ. Use of large-diameter metallic stents to seal traumatic nonmalignant perforations of the esophagus. Gastrointest Endosc. 2003;58(3):356–61.CrossRefGoogle Scholar
  32. 32.
    Dasari BV, Neely D, Kennedy A, et al. The role of esophageal stents in the management of esophageal anastomotic leaks and benign esophageal perforations. Ann Surg. 2014;259(5):852–60.CrossRefGoogle Scholar
  33. 33.
    Gomez-Esquivel R, Raju GS. Endoscopic closure of acute esophageal perforations. Curr Gastroenterol Rep. 2013;15(5):321.CrossRefGoogle Scholar
  34. 34.
    Podas T, Eaden J, Mayberry M, Mayberry J. Achalasia: a critical review of epidemiological studies. Am J Gastroenterol. 1998;93(12):2345–7.CrossRefGoogle Scholar
  35. 35.
    Kraichely RE, Farrugia G. Achalasia: physiology and etiopathogenesis. Dis Esophagus. 2006;19(4):213–23.CrossRefGoogle Scholar
  36. 36.
    de Oliveira RB, Rezende Filho J, Dantas RO, Iazigi N. The spectrum of esophageal motor disorders in Chagas’ disease. Am J Gastroenterol. 1995;90(7):1119–24.Google Scholar
  37. 37.
    Williams VA, Peters JH. Achalasia of the esophagus: a surgical disease. J Am Coll Surg. 2009;208(1):151–62.CrossRefGoogle Scholar
  38. 38.
    Pandolfino JE, Gawron AJ. Achalasia: a systematic review. JAMA. 2015;313(18):1841–52.CrossRefGoogle Scholar
  39. 39.
    Ott DJ, Richter JE, Chen YM, Wu WC, Gelfand DW, Castell DO. Esophageal radiography and manometry: correlation in 172 patients with dysphagia. AJR Am J Roentgenol. 1987;149(2):307–11.CrossRefGoogle Scholar
  40. 40.
    Pasricha PJ, Rai R, Ravich WJ, Hendrix TR, Kalloo AN. Botulinum toxin for achalasia: long-term outcome and predictors of response. Gastroenterology. 1996;110(5):1410–5.CrossRefGoogle Scholar
  41. 41.
    Lynch KL, Pandolfino JE, Howden CW, Kahrilas PJ. Major complications of pneumatic dilation and Heller myotomy for achalasia: single-center experience and systematic review of the literature. Am J Gastroenterol. 2012;107(12):1817–25.CrossRefGoogle Scholar
  42. 42.
    Campos GM, Vittinghoff E, Rabl C, et al. Endoscopic and surgical treatments for achalasia: a systematic review and meta-analysis. Ann Surg. 2009;249(1):45–57.CrossRefGoogle Scholar
  43. 43.
    Boeckxstaens GE, Annese V, des Varannes SB, et al. Pneumatic dilation versus laparoscopic Heller’s myotomy for idiopathic achalasia. New Engl J Med. 2011;364(19):1807–16.CrossRefGoogle Scholar
  44. 44.
    Finley RJ. Achalasia: thoracoscopic and laparoscopic myotomy. 2nd ed. Philadelphia: Churchill Livingstone; 2002.Google Scholar
  45. 45.
    Heitmiller RF, Buzdon MM. Surgery for achalasia and other motility disorders. 2nd ed. Philadelphia: Lippincott, Williams, and Wilkins; 2007.Google Scholar
  46. 46.
    Stewart KC, Finley RJ, Clifton JC, Graham AJ, Storseth C, Inculet R. Thoracoscopic versus laparoscopic modified Heller Myotomy for achalasia: efficacy and safety in 87 patients. J Am Coll Surg. 1999;189(2):164–9; discussion 169–70CrossRefGoogle Scholar
  47. 47.
    Maher JW. Thoracoscopic esophagomyotomy for achalasia: maximum gain, minimal pain. Surgery. 1997;122(4):836–40; discussion 840–1CrossRefGoogle Scholar
  48. 48.
    Maher JW, Conklin J, Heitshusen DS. Thoracoscopic esophagomyotomy for achalasia: preoperative patterns of acid reflux and long-term follow-up. Surgery. 2001;130(4):570–6; discussion 576–7CrossRefGoogle Scholar
  49. 49.
    Champion JK, Delisle N, Hunt T. Comparison of thoracoscopic and laparoscopic esophagomyotomy with fundoplication for primary motility disorders. Eur J Cardiothorac Surg. 1999;16(Suppl 1):S34–6.CrossRefGoogle Scholar
  50. 50.
    Rosemurgy A, Villadolid D, Thometz D, et al. Laparoscopic Heller myotomy provides durable relief from achalasia and salvages failures after botox or dilation. Ann Surg. 2005;241(5):725–33; discussion 733–5CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Costantini M, Zaninotto G, Guirroli E, et al. The laparoscopic Heller-Dor operation remains an effective treatment for esophageal achalasia at a minimum 6-year follow-up. Surg Endosc. 2005;19(3):345–51.CrossRefGoogle Scholar
  52. 52.
    Gholoum S, Feldman LS, Andrew CG, et al. Relationship between subjective and objective outcome measures after Heller myotomy and Dor fundoplication for achalasia. Surg Endosc. 2006;20(2):214–9.CrossRefGoogle Scholar
  53. 53.
    Patti MG, Arcerito M, De Pinto M, et al. Comparison of thoracoscopic and laparoscopic Heller myotomy for achalasia. J Gastrointest Surg. 1998;2(6):561–6.CrossRefGoogle Scholar
  54. 54.
    Patti MG, Pellegrini CA, Horgan S, et al. Minimally invasive surgery for achalasia: an 8-year experience with 168 patients. Ann Surg. 1999;230(4):587–93; discussion 593–4CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Schuchert MJ, Luketich JD, Landreneau RJ, et al. Minimally-invasive esophagomyotomy in 200 consecutive patients: factors influencing postoperative outcomes. Ann Thorac Surg. 2008;85(5):1729–34.CrossRefGoogle Scholar
  56. 56.
    Mehra M, Bahar RJ, Ament ME, et al. Laparoscopic and thoracoscopic esophagomyotomy for children with achalasia. J Pediatr Gastroenterol Nutr. 2001;33(4):466–71.CrossRefGoogle Scholar
  57. 57.
    Rebecchi F, Giaccone C, Farinella E, Campaci R, Morino M. Randomized controlled trial of laparoscopic Heller myotomy plus Dor fundoplication versus Nissen fundoplication for achalasia: long-term results. Ann Surg. 2008;248(6):1023–30.CrossRefGoogle Scholar
  58. 58.
    Jeansonne LO, White BC, Pilger KE, et al. Ten-year follow-up of laparoscopic Heller myotomy for achalasia shows durability. Surg Endosc. 2007;21(9):1498–502.CrossRefGoogle Scholar
  59. 59.
    Persson J, Johnsson E, Kostic S, Lundell L, Smedh U. Treatment of achalasia with laparoscopic myotomy or pneumatic dilatation: long-term results of a prospective, randomized study. World J Surg. 2015;39(3):713–20.CrossRefGoogle Scholar
  60. 60.
    Jain D, Singhal S. Transoral incisionless fundoplication for refractory gastroesophageal reflux disease: where do we stand? Clin Endosc. 2016;49(2):147–56.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Brar TS, Draganov PV, Yang D. Endoluminal therapy for gastroesophageal reflux disease: in between the pill and the knife? Dig Dis Sci. 2017;62(1):16–25.CrossRefGoogle Scholar
  62. 62.
    Crespin OM, Liu LW, Parmar A, et al. Safety and efficacy of POEM for treatment of achalasia: a systematic review of the literature. Surg Endosc. 2017;31(5):2187–201.CrossRefGoogle Scholar
  63. 63.
    Schneider AM, Louie BE, Warren HF, Farivar AS, Schembre DB, Aye RW. A matched comparison of per oral endoscopic myotomy to laparoscopic Heller myotomy in the treatment of achalasia. J Gastrointest Surg. 2016;20(11):1789–96.CrossRefGoogle Scholar
  64. 64.
    Marano L, Pallabazzer G, Solito B, et al. Surgery or peroral esophageal myotomy for achalasia: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95(10):e3001.CrossRefGoogle Scholar
  65. 65.
    Shen KR, Allen MS, Cassivi SD, et al. Surgical management of acquired nonmalignant tracheoesophageal and bronchoesophageal fistulae. Ann Thorac Surg. 2010;90(3):914–8; discussion 919CrossRefGoogle Scholar
  66. 66.
    Hurtgen M, Herber SC. Treatment of malignant tracheoesophageal fistula. Thorac Surg Clin. 2014;24(1):117–27.CrossRefGoogle Scholar
  67. 67.
    Reed WJ, Doyle SE, Aprahamian C. Tracheoesophageal fistula after blunt chest trauma. Ann Thorac Surg. 1995;59(5):1251–6.CrossRefGoogle Scholar
  68. 68.
    Drage SM, Pac Soo C, Dexter T. Delayed presentation of tracheo-oesophageal fistula following percutaneous dilatational tracheostomy. Anaesthesia. 2002;57(9):932–3.CrossRefGoogle Scholar
  69. 69.
    Chang CY, Chang YT, Lee PL, Lin JT. Tracheoesophageal fistula. Gastrointest Endosc. 2004;59(7):870.CrossRefGoogle Scholar
  70. 70.
    Collier KP, Zubarik RS, Lewis JH. Tracheoesophageal fistula from an indwelling endotracheal tube balloon: a report of two cases and review. Gastrointest Endosc. 2000;51(2):231–4.CrossRefGoogle Scholar
  71. 71.
    Mooty RC, Rath P, Self M, Dunn E, Mangram A. Review of tracheo-esophageal fistula associated with endotracheal intubation. J Surg Educ. 2007;64(4):237–40.CrossRefGoogle Scholar
  72. 72.
    Grant DM, Thompson GE. Diagnosis of congenital tracheoesophageal fistula in the adolescent and adult. Anesthesiology. 1978;49(2):139–40.CrossRefGoogle Scholar
  73. 73.
    Lancaster JL, Hanafi Z, Jackson SR. Adult presentation of a tracheoesophageal fistula with co-existing laryngeal cleft. J Laryngol Otol. 1999;113(5):469–72.CrossRefGoogle Scholar
  74. 74.
    Zacharias J, Genc O, Goldstraw P. Congenital tracheoesophageal fistulas presenting in adults: presentation of two cases and a synopsis of the literature. J Thorac Cardiovasc Surg. 2004;128(2):316–8.CrossRefGoogle Scholar
  75. 75.
    Finkelstein RG. The intraoperative diagnosis of a tracheoesophageal fistula in an adult. Anesthesiology. 1999;91(6):1946–7.CrossRefGoogle Scholar
  76. 76.
    Smith HM, Bacon DR, Sprung J. Difficulty assessing endotracheal tube placement in a patient with undiagnosed iatrogenic tracheoesophageal fistula. J Cardiothorac Vasc Anesth. 2006;20(2):223–4.CrossRefGoogle Scholar
  77. 77.
    Muniappan A, Wain JC, Wright CD, et al. Surgical treatment of nonmalignant tracheoesophageal fistula: a thirty-five year experience. Ann Thorac Surg. 2013;95(4):1141–6.CrossRefGoogle Scholar
  78. 78.
    Eleftheriadis E, Kotzampassi K. Temporary stenting of acquired benign tracheoesophageal fistulas in critically ill ventilated patients. Surg Endosc. 2005;19(6):811–5.CrossRefGoogle Scholar
  79. 79.
    Cassivi SD, Deschamps C, Nichols FC 3rd, Allen MS, Pairolero PC. Diverticula of the esophagus. Surg Clin North Am. 2005;85(3):495–503; ixCrossRefGoogle Scholar
  80. 80.
    Rascoe PA, Smythe WR. Excision of esophageal diverticula. 2nd ed. Philadelphia: Lippincott, Williams, and Wilkins; 2007.Google Scholar
  81. 81.
    van Overbeek JJ. Pathogenesis and methods of treatment of Zenker’s diverticulum. Ann Otol Rhinol Laryngol. 2003;112(7):583–93.CrossRefGoogle Scholar
  82. 82.
    Costantini M, Zaninotto G, Rizzetto C, Narne S, Ancona E. Oesophageal diverticula. Best Pract Res Clin Gastroenterol. 2004;18(1):3–17.CrossRefGoogle Scholar
  83. 83.
    Visosky AM, Parke RB, Donovan DT. Endoscopic management of Zenker’s diverticulum: factors predictive of success or failure. Ann Otol Rhinol Laryngol. 2008;117(7):531–7.CrossRefGoogle Scholar
  84. 84.
    Verdonck J, Morton RP. Systematic review on treatment of Zenker’s diverticulum. Eur Arch Otorhinolaryngol. 2015;272(11):3095–107.CrossRefGoogle Scholar
  85. 85.
    Varghese TK Jr, Marshall B, Chang AC, Pickens A, Lau CL, Orringer MB. Surgical treatment of epiphrenic diverticula: a 30-year experience. Ann Thorac Surg. 2007;84(6):1801–9; discussion 1801–9CrossRefGoogle Scholar
  86. 86.
    Achim V, Aye RW, Farivar AS, Vallieres E, Louie BE. A combined thoracoscopic and laparoscopic approach for high epiphrenic diverticula and the importance of complete myotomy. Surg Endosc. 2017;31(2):788–94.CrossRefGoogle Scholar
  87. 87.
    Hirano Y, Takeuchi H, Oyama T, et al. Minimally invasive surgery for esophageal epiphrenic diverticulum: the results of 133 patients in 25 published series and our experience. Surg Today. 2013;43(1):1–7.CrossRefGoogle Scholar
  88. 88.
    Andolfi C, Wiesel O, Fisichella PM. Surgical treatment of epiphrenic diverticulum: technique and controversies. J Laparoendosc Adv Surg Tech A. 2016;26(11):905–10.CrossRefGoogle Scholar
  89. 89.
    Onwugbufor MT, Obirieze AC, Ortega G, Allen D, Cornwell EE 3rd, Fullum TM. Surgical management of esophageal diverticulum: a review of the nationwide inpatient sample database. J Surg Res. 2013;184(1):120–5.CrossRefGoogle Scholar
  90. 90.
    Kamangar F, Chow WH, Abnet CC, Dawsey SM. Environmental causes of esophageal cancer. Gastroenterol Clin N Am. 2009;38(1):27–57, viiCrossRefGoogle Scholar
  91. 91.
    Liu W, Zhang X, Sun W. Developments in treatment of esophageal/gastric cancer. Curr Treat Options in Oncol. 2008;9(4–6):375–87.CrossRefGoogle Scholar
  92. 92.
    Napier KJ, Scheerer M, Misra S. Esophageal cancer: a review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol. 2014;6(5):112–20.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Maish MS, DeMeester SR. Endoscopic mucosal resection as a staging technique to determine the depth of invasion of esophageal adenocarcinoma. Ann Thorac Surg. 2004;78(5):1777–82.CrossRefGoogle Scholar
  94. 94.
    Prasad GA, Buttar NS, Wongkeesong LM, et al. Significance of neoplastic involvement of margins obtained by endoscopic mucosal resection in Barrett’s esophagus. Am J Gastroenterol. 2007;102(11):2380–6.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ell C, May A, Pech O, et al. Curative endoscopic resection of early esophageal adenocarcinomas (Barrett’s cancer). Gastrointest Endosc. 2007;65(1):3–10.CrossRefGoogle Scholar
  96. 96.
    Pech O, Behrens A, May A, et al. Long-term results and risk factor analysis for recurrence after curative endoscopic therapy in 349 patients with high-grade intraepithelial neoplasia and mucosal adenocarcinoma in Barrett’s oesophagus. Gut. 2008;57(9):1200–6.CrossRefGoogle Scholar
  97. 97.
    Ilson DH. Esophageal cancer chemotherapy: recent advances. Gastrointest Cancer Res. 2008;2(2):85–92.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Le Bras GF, Farooq MH, Falk GW, Andl CD. Esophageal cancer: the latest on chemoprevention and state of the art therapies. Pharmacol Res. 2016;113(Pt A):236–44.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Berry MF. The role of induction therapy for esophageal cancer. Thorac Surg Clin. 2016;26(3):295–304.CrossRefGoogle Scholar
  100. 100.
    Veuillez V, Rougier P, Seitz JF. The multidisciplinary management of gastrointestinal cancer. Multimodal treatment of oesophageal cancer. Best Pract Res Clin Gastroenterol. 2007;21(6):947–63.CrossRefGoogle Scholar
  101. 101.
    Fernando HC, Murthy SC, Hofstetter W, et al. The Society of Thoracic Surgeons practice guideline series: guidelines for the management of Barrett’s esophagus with high-grade dysplasia. Ann Thorac Surg. 2009;87(6):1993–2002.CrossRefGoogle Scholar
  102. 102.
    Orringer MB, Marshall B, Stirling MC. Transhiatal esophagectomy for benign and malignant disease. J Thorac Cardiovasc Surg. 1993;105(2):265–76; discussion 276–7Google Scholar
  103. 103.
    Ferraro P, Duranceau A. Esophagectomy for benign disease. In: Pearson FG, Cooper JD, Deslauriers J, et al., editors. Esophageal surgery. 2nd ed. New York: Churchill Livingstone; 2002. p. 453–64.Google Scholar
  104. 104.
    Orringer MB, Marshall B, Chang AC, Lee J, Pickens A, Lau CL. Two thousand transhiatal esophagectomies: changing trends, lessons learned. Ann Surg. 2007;246(3):363–72; discussion 372–4CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Hulscher JB, Tijssen JG, Obertop H, van Lanschot JJ. Transthoracic versus transhiatal resection for carcinoma of the esophagus: a meta-analysis. Ann Thorac Surg. 2001;72(1):306–13.CrossRefGoogle Scholar
  106. 106.
    Hulscher JB, van Sandick JW, de Boer AG, et al. Extended transthoracic resection compared with limited transhiatal resection for adenocarcinoma of the esophagus. N Engl J Med. 2002;347(21):1662–9.CrossRefPubMedGoogle Scholar
  107. 107.
    Rentz J, Bull D, Harpole D, et al. Transthoracic versus transhiatal esophagectomy: a prospective study of 945 patients. J Thorac Cardiovasc Surg. 2003;125(5):1114–20.CrossRefGoogle Scholar
  108. 108.
    Raymond DP, Seder CW, Wright CD, et al. Predictors of major morbidity or mortality after resection for esophageal cancer: a society of thoracic surgeons general thoracic surgery database risk adjustment model. Ann Thorac Surg. 2016;102(1):207–14.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Papenfuss WA, Kukar M, Attwood K, et al. Transhiatal versus transthoracic esophagectomy for esophageal cancer: a 2005-2011 NSQIP comparison of modern multicenter results. J Surg Oncol. 2014;110(3):298–301.CrossRefGoogle Scholar
  110. 110.
    Boshier PR, Anderson O, Hanna GB. Transthoracic versus transhiatal esophagectomy for the treatment of esophagogastric cancer: a meta-analysis. Ann Surg. 2011;254(6):894–906.CrossRefGoogle Scholar
  111. 111.
    Ryan CE, Paniccia A, Meguid RA, McCarter MD. Transthoracic anastomotic leak after esophagectomy: current trends. Ann Surg Oncol. 2017;24(1):281–90.CrossRefGoogle Scholar
  112. 112.
    Luketich JD, Alvelo-Rivera M, Buenaventura PO, et al. Minimally invasive esophagectomy: outcomes in 222 patients. Ann Surg. 2003;238(4):486–94; discussion 494–5PubMedPubMedCentralGoogle Scholar
  113. 113.
    Luketich JD, Pennathur A, Franchetti Y, et al. Minimally invasive esophagectomy: results of a prospective phase II multicenter trial-the eastern cooperative oncology group (E2202) study. Ann Surg. 2015;261(4):702–7.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Sihag S, Kosinski AS, Gaissert HA, Wright CD, Schipper PH. Minimally invasive versus open esophagectomy for esophageal cancer: a comparison of early surgical outcomes from the society of thoracic surgeons national database. Ann Thorac Surg. 2016;101(4):1281–8; discussion 1288–9CrossRefGoogle Scholar
  115. 115.
    Wang W, Zhou Y, Feng J, Mei Y. Oncological and surgical outcomes of minimally invasive versus open esophagectomy for esophageal squamous cell carcinoma: a matched-pair comparative study. Int J Clin Exp Med. 2015;8(9):15983–90.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Biere SS, van Berge Henegouwen MI, Maas KW, et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial. Lancet. 2012;379(9829):1887–92.CrossRefGoogle Scholar
  117. 117.
    Maas KW, Cuesta MA, van Berge Henegouwen MI, et al. Quality of life and late complications after minimally invasive compared to open esophagectomy: results of a randomized trial. World J Surg. 2015;39(8):1986–93.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Straatman J, van der Wielen N, Cuesta MA, et al. Minimally invasive versus open esophageal resection: three-year follow-up of the previously reported randomized controlled trial: the TIME trial. Ann Surg. 2017;266(2):232–6.CrossRefGoogle Scholar
  119. 119.
    Yerokun BA, Sun Z, Yang CJ, et al. Minimally invasive versus open esophagectomy for esophageal cancer: a population-based analysis. Ann Thorac Surg. 2016;102(2):416–23.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Tapias LF, Mathisen DJ, Wright CD, et al. Outcomes with open and minimally invasive Ivor Lewis esophagectomy after neoadjuvant therapy. Ann Thorac Surg. 2016;101(3):1097–103.CrossRefGoogle Scholar
  121. 121.
    Zhou C, Zhang L, Wang H, et al. Superiority of minimally invasive oesophagectomy in reducing in-hospital mortality of patients with resectable oesophageal cancer: a meta-analysis. PLoS One. 2015;10(7):e0132889.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Rodham P, Batty JA, McElnay PJ, Immanuel A. Does minimally invasive oesophagectomy provide a benefit in hospital length of stay when compared with open oesophagectomy? Interact Cardiovasc Thorac Surg. 2016;22(3):360–7.CrossRefGoogle Scholar
  123. 123.
    Guo W, Ma X, Yang S, et al. Combined thoracoscopic-laparoscopic esophagectomy versus open esophagectomy: a meta-analysis of outcomes. Surg Endosc. 2016;30(9):3873–81.CrossRefGoogle Scholar
  124. 124.
    Cerfolio RJ, Wei B, Hawn MT, Minnich DJ. Robotic esophagectomy for cancer: early results and lessons learned. Semin Thorac Cardiovasc Surg. 2016;28(1):160–9.CrossRefGoogle Scholar
  125. 125.
    Sarkaria IS, Rizk NP, Grosser R, et al. Attaining proficiency in robotic-assisted minimally invasive esophagectomy while maximizing safety during procedure development. Innovations (Phila). 2016;11(4):268–73.Google Scholar
  126. 126.
    van der Sluis PC, Ruurda JP, van der Horst S, et al. Robot-assisted minimally invasive thoraco-laparoscopic esophagectomy versus open transthoracic esophagectomy for resectable esophageal cancer, a randomized controlled trial (ROBOT trial). Trials. 2012;13:230.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Urschel JD. Late dysphagia after presternal colon interposition. Dysphagia. 1996;11(1):75–7.CrossRefGoogle Scholar
  128. 128.
    Cense HA, Visser MR, van Sandick JW, et al. Quality of life after colon interposition by necessity for esophageal cancer replacement. J Surg Oncol. 2004;88(1):32–8.CrossRefGoogle Scholar
  129. 129.
    Domreis JS, Jobe BA, Aye RW, Deveney KE, Sheppard BC, Deveney CW. Management of long-term failure after colon interposition for benign disease. Am J Surg. 2002;183(5):544–6.CrossRefGoogle Scholar
  130. 130.
    Jeyasingham K, Lerut T, Belsey RH. Revisional surgery after colon interposition for benign oesophageal disease. Dis Esophagus. 1999;12(1):7–9.CrossRefGoogle Scholar
  131. 131.
    de Delva PE, Morse CR, Austen WG Jr, et al. Surgical management of failed colon interposition. Eur J Cardiothorac Surg. 2008;34(2):432–7; discussion 437CrossRefGoogle Scholar
  132. 132.
    Doki Y, Okada K, Miyata H, et al. Long-term and short-term evaluation of esophageal reconstruction using the colon or the jejunum in esophageal cancer patients after gastrectomy. Dis Esophagus. 2008;21(2):132–8.CrossRefGoogle Scholar
  133. 133.
    Cerfolio RJ, Allen MS, Deschamps C, Trastek VF, Pairolero PC. Esophageal replacement by colon interposition. Ann Thorac Surg. 1995;59(6):1382–4.CrossRefGoogle Scholar
  134. 134.
    Briel JW, Tamhankar AP, Hagen JA, et al. Prevalence and risk factors for ischemia, leak, and stricture of esophageal anastomosis: gastric pull-up versus colon interposition. J Am Coll Surg. 2004;198(4):536–41; discussion 541–2CrossRefGoogle Scholar
  135. 135.
    Wain JC, Wright CD, Kuo EY, et al. Long-segment colon interposition for acquired esophageal disease. Ann Thorac Surg. 1999;67(2):313–7; discussion 317–8CrossRefGoogle Scholar
  136. 136.
    Ring WS, Varco RL, L’Heureux PR, Foker JE. Esophageal replacement with jejunum in children: an 18 to 33 year follow-up. J Thorac Cardiovasc Surg. 1982;83(6):918–27.Google Scholar
  137. 137.
    Smith RW, Garvey CJ, Dawson PM, Davies DM. Jejunum versus colon for free oesophageal reconstruction: an experimental radiological assessment. Br J Plast Surg. 1987;40(2):181–7.CrossRefGoogle Scholar
  138. 138.
    Meyers WC, Seigler HF, Hanks JB, et al. Postoperative function of “free” jejunal transplants for replacement of the cervical esophagus. Ann Surg. 1980;192(4):439–50.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Wright C, Cuschieri A. Jejunal interposition for benign esophageal disease. Technical considerations and long-term results. Ann Surg. 1987;205(1):54–60.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Moreno-Osset E, Tomas-Ridocci M, Paris F, et al. Motor activity of esophageal substitute (stomach, jejunal, and colon segments). Ann Thorac Surg. 1986;41(5):515–9.CrossRefGoogle Scholar
  141. 141.
    Baker CR, Forshaw MJ, Gossage JA, Ng R, Mason RC. Long-term outcome and quality of life after supercharged jejunal interposition for oesophageal replacement. Surgeon. 2015;13(4):187–93.CrossRefGoogle Scholar
  142. 142.
    Swisher SG, Hofstetter WL, Miller MJ. The supercharged microvascular jejunal interposition. Semin Thorac Cardiovasc Surg. 2007;19(1):56–65.CrossRefGoogle Scholar
  143. 143.
    Ascioti AJ, Hofstetter WL, Miller MJ, et al. Long-segment, supercharged, pedicled jejunal flap for total esophageal reconstruction. J Thorac Cardiovasc Surg. 2005;130(5):1391–8.CrossRefGoogle Scholar
  144. 144.
    Stephens EH, Gaur P, Hotze KO, Correa AM, Kim MP, Blackmon SH. Super-charged pedicled jejunal interposition performance compares favorably with a gastric conduit after esophagectomy. Ann Thorac Surg. 2015;100(2):407–13.CrossRefGoogle Scholar
  145. 145.
    Sungurtekin H, Sungurtekin U, Balci C, Zencir M, Erdem E. The influence of nutritional status on complications after major intraabdominal surgery. J Am Coll Nutr. 2004;23(3):227–32.CrossRefGoogle Scholar
  146. 146.
    Windsor JA, Hill GL. Weight loss with physiologic impairment. A basic indicator of surgical risk. Ann Surg. 1988;207(3):290–6.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Fleisher LA, Fleischmann KE, Auerbach AD, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;64(22):e77–137.CrossRefGoogle Scholar
  148. 148.
    Fleisher LA, Fleischmann KE, Auerbach AD, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130(24):e278–333.Google Scholar
  149. 149.
    Yamanaka Y, Mammoto T, Kita T, Kishi Y. A study of 13 patients with gastric tube in place after esophageal resection: use of omeprazole to decrease gastric acidity and volume. J Clin Anesth. 2001;13(5):370–3.CrossRefGoogle Scholar
  150. 150.
    Pisegna JR, Karlstadt RG, Norton JA, et al. Effect of preoperative intravenous pantoprazole in elective-surgery patients: a pilot study. Dig Dis Sci. 2009;54(5):1041–9.CrossRefGoogle Scholar
  151. 151.
    Nishina K, Mikawa K, Takao Y, Shiga M, Maekawa N, Obara H. A comparison of rabeprazole, lansoprazole, and ranitidine for improving preoperative gastric fluid property in adults undergoing elective surgery. Anesth Analg. 2000;90(3):717–21.CrossRefGoogle Scholar
  152. 152.
    Jeske HC, Borovicka J, von Goedecke A, et al. Preoperative administration of esomeprazole has no influence on frequency of refluxes. J Clin Anesth. 2008;20(3):191–5.CrossRefGoogle Scholar
  153. 153.
    Ng A, Smith G. Gastroesophageal reflux and aspiration of gastric contents in anesthetic practice. Anesth Analg. 2001;93(2):494–513.Google Scholar
  154. 154.
    Pisegna JR, Martindale RG. Acid suppression in the perioperative period. J Clin Gastroenterol. 2005;39(1):10–6.Google Scholar
  155. 155.
    Wijnhoven BP, van Lanschot JJ, Tilanus HW, Steyerberg EW, van der Gaast A. Neoadjuvant chemoradiotherapy for esophageal cancer: a review of meta-analyses. World J Surg. 2009;33(12):2606–14.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Ardalan B, Spector SA, Livingstone AS, et al. Neoadjuvant, surgery and adjuvant chemotherapy without radiation for esophageal cancer. Jpn J Clin Oncol. 2007;37(8):590–6.CrossRefGoogle Scholar
  157. 157.
    Oppedijk V, van der Gaast A, van Lanschot JJ, et al. Patterns of recurrence after surgery alone versus preoperative chemoradiotherapy and surgery in the CROSS trials. J Clin Oncol. 2014;32(5):385–91.CrossRefGoogle Scholar
  158. 158.
    Rudin A, Flisberg P, Johansson J, Walther B, Lundberg CJ. Thoracic epidural analgesia or intravenous morphine analgesia after thoracoabdominal esophagectomy: a prospective follow-up of 201 patients. J Cardiothorac Vasc Anesth. 2005;19(3):350–7.CrossRefGoogle Scholar
  159. 159.
    Flisberg P, Tornebrandt K, Walther B, Lundberg J. Pain relief after esophagectomy: thoracic epidural analgesia is better than parenteral opioids. J Cardiothorac Vasc Anesth. 2001;15(3):282–7.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Smedstad KG, Beattie WS, Blair WS, Buckley DN. Postoperative pain relief and hospital stay after total esophagectomy. Clin J Pain. 1992;8(2):149–53.CrossRefGoogle Scholar
  161. 161.
    Tsui SL, Law S, Fok M, et al. Postoperative analgesia reduces mortality and morbidity after esophagectomy. Am J Surg. 1997;173(6):472–8.CrossRefGoogle Scholar
  162. 162.
    Fares KM, Mohamed SA, Hamza HM, Sayed DM, Hetta DF. Effect of thoracic epidural analgesia on pro-inflammatory cytokines in patients subjected to protective lung ventilation during Ivor Lewis esophagectomy. Pain Physician. 2014;17(4):305–15.Google Scholar
  163. 163.
    Li W, Li Y, Huang Q, Ye S, Rong T. Short and long-term outcomes of epidural or intravenous analgesia after esophagectomy: a propensity-matched cohort study. PLoS One. 2016;11(4):e0154380.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Ballantyne JC, Carr DB, deFerranti S, et al. The comparative effects of postoperative analgesic therapies on pulmonary outcome: cumulative meta-analyses of randomized, controlled trials. Anesth Analg. 1998;86(3):598–612.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Cense HA, Lagarde SM, de Jong K, et al. Association of no epidural analgesia with postoperative morbidity and mortality after transthoracic esophageal cancer resection. J Am Coll Surg. 2006;202(3):395–400.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Michelet P, D’Journo XB, Roch A, et al. Perioperative risk factors for anastomotic leakage after esophagectomy: influence of thoracic epidural analgesia. Chest. 2005;128(5):3461–6.CrossRefGoogle Scholar
  167. 167.
    Whooley BP, Law S, Murthy SC, Alexandrou A, Wong J. Analysis of reduced death and complication rates after esophageal resection. Ann Surg. 2001;233(3):338–44.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Heinrich S, Janitz K, Merkel S, Klein P, Schmidt J. Short- and long term effects of epidural analgesia on morbidity and mortality of esophageal cancer surgery. Langenbecks Arch Surg. 2015;400(1):19–26.CrossRefGoogle Scholar
  169. 169.
    Yap FH, Lau JY, Joynt GM, Chui PT, Chan AC, Chung SS. Early extubation after transthoracic oesophagectomy. Hong Kong Med J. 2003;9(2):98–102.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Neal JM, Wilcox RT, Allen HW, Low DE. Near-total esophagectomy: the influence of standardized multimodal management and intraoperative fluid restriction. Reg Anesth Pain Med. 2003;28(4):328–34.Google Scholar
  171. 171.
    Low DE, Kunz S, Schembre D, et al. Esophagectomy – it’s not just about mortality anymore: standardized perioperative clinical pathways improve outcomes in patients with esophageal cancer. J Gastrointest Surg. 2007;11(11):1395–402; discussion 1402CrossRefGoogle Scholar
  172. 172.
    Buise M, Van Bommel J, Mehra M, Tilanus HW, Van Zundert A, Gommers D. Pulmonary morbidity following esophagectomy is decreased after introduction of a multimodal anesthetic regimen. Acta Anaesthesiol Belg. 2008;59(4):257–61.Google Scholar
  173. 173.
    Gemmill EH, Humes DJ, Catton JA. Systematic review of enhanced recovery after gastro-oesophageal cancer surgery. Ann R Coll Surg Engl. 2015;97(3):173–9.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Porteous GH, Neal JM, Slee A, Schmidt H, Low DE. A standardized anesthetic and surgical clinical pathway for esophageal resection: impact on length of stay and major outcomes. Reg Anesth Pain Med. 2015;40(2):139–49.CrossRefGoogle Scholar
  175. 175.
    Cao S, Zhao G, Cui J, et al. Fast-track rehabilitation program and conventional care after esophagectomy: a retrospective controlled cohort study. Support Care Cancer. 2013;21(3):707–14.CrossRefGoogle Scholar
  176. 176.
    Chen L, Sun L, Lang Y, et al. Fast-track surgery improves postoperative clinical recovery and cellular and humoral immunity after esophagectomy for esophageal cancer. BMC Cancer. 2016;16:449.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Kahn L, Baxter FJ, Dauphin A, et al. A comparison of thoracic and lumbar epidural techniques for post-thoracoabdominal esophagectomy analgesia. Can J Anaesth. 1999;46(5 Pt 1):415–22.CrossRefGoogle Scholar
  178. 178.
    Luketich JD, Land SR, Sullivan EA, et al. Thoracic epidural versus intercostal nerve catheter plus patient-controlled analgesia: a randomized study. Ann Thorac Surg. 2005;79(6):1845–9; discussion 1849–50CrossRefGoogle Scholar
  179. 179.
    Debreceni G, Molnar Z, Szelig L, Molnar TF. Continuous epidural or intercostal analgesia following thoracotomy: a prospective randomized double-blind clinical trial. Acta Anaesthesiol Scand. 2003;47(9):1091–5.CrossRefGoogle Scholar
  180. 180.
    Francois T, Blanloeil Y, Pillet F, et al. Effect of interpleural administration of bupivacaine or lidocaine on pain and morphine requirement after esophagectomy with thoracotomy: a randomized, double-blind and controlled study. Anesth Analg. 1995;80(4):718–23.Google Scholar
  181. 181.
    Wheatley GH 3rd, Rosenbaum DH, Paul MC, et al. Improved pain management outcomes with continuous infusion of a local anesthetic after thoracotomy. J Thorac Cardiovasc Surg. 2005;130(2):464–8.CrossRefGoogle Scholar
  182. 182.
    Marret E, Bazelly B, Taylor G, et al. Paravertebral block with ropivacaine 0.5% versus systemic analgesia for pain relief after thoracotomy. Ann Thorac Surg. 2005;79(6):2109–13.CrossRefGoogle Scholar
  183. 183.
    Casati A, Alessandrini P, Nuzzi M, et al. A prospective, randomized, blinded comparison between continuous thoracic paravertebral and epidural infusion of 0.2% ropivacaine after lung resection surgery. Eur J Anaesthesiol. 2006;23(12):999–1004.CrossRefGoogle Scholar
  184. 184.
    Davies RG, Myles PS, Graham JM. A comparison of the analgesic efficacy and side-effects of paravertebral vs epidural blockade for thoracotomy – a systematic review and meta-analysis of randomized trials. Br J Anaesth. 2006;96(4):418–26.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Yeung JH, Gates S, Naidu BV, Wilson MJ, Gao Smith F. Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. Cochrane Database Syst Rev. 2016;2:CD009121.Google Scholar
  186. 186.
    Scarfe AJ, Schuhmann-Hingel S, Duncan JK, Ma N, Atukorale YN, Cameron AL. Continuous paravertebral block for post-cardiothoracic surgery analgesia: a systematic review and meta-analysis. Eur J Cardiothorac Surg. 2016;50(6):1010–8.CrossRefGoogle Scholar
  187. 187.
    Conlon NP, Shaw AD, Grichnik KP. Postthoracotomy paravertebral analgesia: will it replace epidural analgesia? Anesthesiol Clin. 2008;26(2):369–80, viiiCrossRefGoogle Scholar
  188. 188.
    Daly DJ, Myles PS. Update on the role of paravertebral blocks for thoracic surgery: are they worth it? Curr Opin Anaesthesiol. 2009;22(1):38–43.CrossRefGoogle Scholar
  189. 189.
    Zhang W, Fang C, Li J, et al. Single-dose, bilateral paravertebral block plus intravenous sufentanil analgesia in patients with esophageal cancer undergoing combined thoracoscopic-laparoscopic esophagectomy: a safe and effective alternative. J Cardiothorac Vasc Anesth. 2014;28(4):966–72.CrossRefGoogle Scholar
  190. 190.
    Li NL, Liu CC, Cheng SH, et al. Feasibility of combined paravertebral block and subcostal transversus abdominis plane block in postoperative pain control after minimally invasive esophagectomy. Acta Anaesthesiol Taiwanica. 2013;51(3):103–7.CrossRefGoogle Scholar
  191. 191.
    Barbera C, Milito P, Punturieri M, Asti E, Bonavina L. Serratus anterior plane block for hybrid transthoracic esophagectomy: a pilot study. J Pain Res. 2017;10:73–7.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Brown MJ, Kor DJ, Allen MS, et al. Dual-epidural catheter technique and perioperative outcomes after Ivor-Lewis esophagectomy. Reg Anesth Pain Med. 2013;38(1):3–8.CrossRefGoogle Scholar
  193. 193.
    Yegin A, Erdogan A, Kayacan N, Karsli B. Early postoperative pain management after thoracic surgery; pre- and postoperative versus postoperative epidural analgesia: a randomised study. Eur J Cardiothorac Surg. 2003;24(3):420–4.CrossRefGoogle Scholar
  194. 194.
    Bong CL, Samuel M, Ng JM, Ip-Yam C. Effects of preemptive epidural analgesia on post-thoracotomy pain. J Cardiothorac Vasc Anesth. 2005;19(6):786–93.CrossRefGoogle Scholar
  195. 195.
    Salengros JC, Huybrechts I, Ducart A, et al. Different anesthetic techniques associated with different incidences of chronic post-thoracotomy pain: low-dose remifentanil plus presurgical epidural analgesia is preferable to high-dose remifentanil with postsurgical epidural analgesia. J Cardiothorac Vasc Anesth. 2010;24(4):608–16.CrossRefGoogle Scholar
  196. 196.
    Rodriguez-Aldrete D, Candiotti KA, Janakiraman R, Rodriguez-Blanco YF. Trends and new evidence in the management of acute and chronic post-thoracotomy pain-an overview of the literature from 2005 to 2015. J Cardiothorac Vasc Anesth. 2016;30(3):762–72.CrossRefGoogle Scholar
  197. 197.
    Chen HC, Huang HJ, Wu CY, Lin TS, Fang HY. Esophageal schwannoma with tracheal compression. Thorac Cardiovasc Surg. 2006;54(8):555–8.CrossRefGoogle Scholar
  198. 198.
    Mizuguchi S, Inoue K, Imagawa A, et al. Benign esophageal schwannoma compressing the trachea in pregnancy. Ann Thorac Surg. 2008;85(2):660–2.CrossRefGoogle Scholar
  199. 199.
    Sasano H, Sasano N, Ito S, et al. Continuous positive airway pressure applied through a bronchial blocker as a treatment for hypoxemia due to stenosis of the left main bronchus. Anesthesiology. 2009;110(5):1199–200.CrossRefGoogle Scholar
  200. 200.
    Andronikou S, Wieselthaler N, Kilborn T. Significant airway compromise in a child with a posterior mediastinal mass due to tuberculous spondylitis. Pediatr Radiol. 2005;35(11):1159–60.CrossRefGoogle Scholar
  201. 201.
    Blank RS, Waldrop CS, Balestrieri PJ. Pseudomeningocele: an unusual cause of intraoperative tracheal compression and expiratory obstruction. Anesth Analg. 2008;107(1):226–8.CrossRefGoogle Scholar
  202. 202.
    ul Huda A, Siddiqui KM, Khan FH. Emergency airway management of a patient with mediastinal mass. J Pak Med Assoc. 2007;57(3):152–4.Google Scholar
  203. 203.
    Tokunaga T, Takeda S, Sumimura J, Maeda H. Esophageal schwannoma: report of a case. Surg Today. 2007;37(6):500–2.CrossRefGoogle Scholar
  204. 204.
    Hasan N, Mandhan P. Respiratory obstruction caused by lipoma of the esophagus. J Pediatr Surg. 1994;29(12):1565–6.CrossRefGoogle Scholar
  205. 205.
    Walton AR. Acute upper airway obstruction due to oesophageal achalasia. Anaesthesia. 2009;64(2):222–3.CrossRefGoogle Scholar
  206. 206.
    Kaths JM, Foltys DB, Scheuermann U, et al. Achalasia with megaesophagus and tracheal compression in a young patient: a case report. Int J Surg Case Rep. 2015;14:16–8.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Westbrook JL. Oesophageal achalasia causing respiratory obstruction. Anaesthesia. 1992;47(1):38–40.CrossRefGoogle Scholar
  208. 208.
    Arcos E, Medina C, Mearin F, Larish J, Guarner L, Malagelada JR. Achalasia presenting as acute airway obstruction. Dig Dis Sci. 2000;45(10):2079–83.CrossRefGoogle Scholar
  209. 209.
    Layton J, Ward PW, Miller DW, Roan RM. Acute respiratory failure secondary to esophageal dilation from undiagnosed achalasia. A A Case Rep. 2014;3(5):65–7.CrossRefGoogle Scholar
  210. 210.
    Bechard P, Letourneau L, Lacasse Y, Cote D, Bussieres JS. Perioperative cardiorespiratory complications in adults with mediastinal mass: incidence and risk factors. Anesthesiology. 2004;100(4):826–34; discussion 825ACrossRefGoogle Scholar
  211. 211.
    Black DR, Thangathurai D, Senthilkumar N, Roffey P, Mikhail M. High risk of aspiration and difficult intubation in post-esophagectomy patients. Acta Anaesthesiol Scand. 1999;43(6):687.CrossRefGoogle Scholar
  212. 212.
    Pennefather SH. Anaesthesia for oesophagectomy. Curr Opin Anaesthesiol. 2007;20(1):15–20.CrossRefGoogle Scholar
  213. 213.
    Ng JM. Perioperative anesthetic management for esophagectomy. Anesthesiol Clin. 2008;26(2):293–304, viCrossRefGoogle Scholar
  214. 214.
    de Souza DG, Gaughen CL. Aspiration risk after esophagectomy. Anesth Analg. 2009;109(4):1352.CrossRefGoogle Scholar
  215. 215.
    Bartels K, Fiegel M, Stevens Q, Ahlgren B, Weitzel N. Approaches to perioperative care for esophagectomy. J Cardiothorac Vasc Anesth. 2015;29(2):472–80.CrossRefGoogle Scholar
  216. 216.
    Sakai T, Planinsic RM, Quinlan JJ, Handley LJ, Kim TY, Hilmi IA. The incidence and outcome of perioperative pulmonary aspiration in a university hospital: a 4-year retrospective analysis. Anesth Analg. 2006;103(4):941–7.CrossRefGoogle Scholar
  217. 217.
    Robinson GV, Kanji H, Davies RJ, Gleeson FV. Selective pulmonary fat aspiration complicating oesophageal achalasia. Thorax. 2004;59(2):180.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Akritidis N, Gousis C, Dimos G, Paparounas K. Fever, cough, and bilateral lung infiltrates. Achalasia associated with aspiration pneumonia. Chest. 2003;123(2):608–12.CrossRefGoogle Scholar
  219. 219.
    Practice Guidelines for Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration: Application to Healthy Patients Undergoing Elective Procedures: An Updated Report by the American Society of Anesthesiologists Task Force on Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration. Anesthesiology. 2017;126(3):376–93.Google Scholar
  220. 220.
    Brady M, Kinn S, Stuart P. Preoperative fasting for adults to prevent perioperative complications. Cochrane Database Syst Rev. 2003;(4):CD004423.Google Scholar
  221. 221.
    Brady M, Kinn S, Ness V, O’Rourke K, Randhawa N, Stuart P. Preoperative fasting for preventing perioperative complications in children. Cochrane Database Syst Rev. 2009;(4):CD005285.Google Scholar
  222. 222.
    Ovassapian A, Salem MR. Sellick’s maneuver: to do or not do. Anesth Analg. 2009;109(5):1360–2.CrossRefGoogle Scholar
  223. 223.
    Lerman J. On cricoid pressure: “may the force be with you”. Anesth Analg. 2009;109(5):1363–6.CrossRefGoogle Scholar
  224. 224.
    El-Orbany M, Connolly LA. Rapid sequence induction and intubation: current controversy. Anesth Analg. 2010;110(5):1318–25.CrossRefGoogle Scholar
  225. 225.
    Salem MR, Khorasani A, Zeidan A, Crystal GJ. Cricoid pressure controversies: narrative review. Anesthesiology. 2017;126(4):738–52.CrossRefGoogle Scholar
  226. 226.
    Algie CM, Mahar RK, Tan HB, Wilson G, Mahar PD, Wasiak J. Effectiveness and risks of cricoid pressure during rapid sequence induction for endotracheal intubation. Cochrane Database Syst Rev. 2015;(11):CD011656.Google Scholar
  227. 227.
    Bohman JK, Kashyap R, Lee A, et al. A pilot randomized clinical trial assessing the effect of cricoid pressure on risk of aspiration. Clin Respir J. 2018;12(1):175–82.CrossRefGoogle Scholar
  228. 228.
    Smith KJ, Dobranowski J, Yip G, Dauphin A, Choi PT. Cricoid pressure displaces the esophagus: an observational study using magnetic resonance imaging. Anesthesiology. 2003;99(1):60–4.CrossRefGoogle Scholar
  229. 229.
    Boet S, Duttchen K, Chan J, et al. Cricoid pressure provides incomplete esophageal occlusion associated with lateral deviation: a magnetic resonance imaging study. J Emerg Med. 2012;42(5):606–11.CrossRefGoogle Scholar
  230. 230.
    Rice MJ, Mancuso AA, Gibbs C, Morey TE, Gravenstein N, Deitte LA. Cricoid pressure results in compression of the postcricoid hypopharynx: the esophageal position is irrelevant. Anesth Analg. 2009;109(5):1546–52.CrossRefGoogle Scholar
  231. 231.
    Zeidan AM, Salem MR, Mazoit JX, Abdullah MA, Ghattas T, Crystal GJ. The effectiveness of cricoid pressure for occluding the esophageal entrance in anesthetized and paralyzed patients: an experimental and observational glidescope study. Anesth Analg. 2014;118(3):580–6.CrossRefGoogle Scholar
  232. 232.
    Zeidan AM, Salem MR, Bamadhaj M, et al. The cricoid force necessary to occlude the esophageal entrance: is there a gender difference? Anesth Analg. 2017;124(4):1168–73.CrossRefGoogle Scholar
  233. 233.
    Byas-Smith M, Prinsell JR Jr. Ultrasound-guided esophageal occlusion during rapid sequence induction. Can J Anaesth. 2013;60(3):327–8.CrossRefGoogle Scholar
  234. 234.
    Brimacombe JR, Berry AM. Cricoid pressure. Can J Anaesth. 1997;44(4):414–25.CrossRefGoogle Scholar
  235. 235.
    Ellis DY, Harris T, Zideman D. Cricoid pressure in emergency department rapid sequence tracheal intubations: a risk-benefit analysis. Ann Emerg Med. 2007;50(6):653–65.CrossRefGoogle Scholar
  236. 236.
    Asai T, Barclay K, Power I, Vaughan RS. Cricoid pressure impedes placement of the laryngeal mask airway. Br J Anaesth. 1995;74(5):521–5.CrossRefGoogle Scholar
  237. 237.
    Aoyama K, Takenaka I, Sata T, Shigematsu A. Cricoid pressure impedes positioning and ventilation through the laryngeal mask airway. Can J Anaesth. 1996;43(10):1035–40.CrossRefGoogle Scholar
  238. 238.
    Heath KJ, Palmer M, Fletcher SJ. Fracture of the cricoid cartilage after Sellick’s manoeuvre. Br J Anaesth. 1996;76(6):877–8.CrossRefGoogle Scholar
  239. 239.
    Landsman I. Cricoid pressure: indications and complications. Paediatr Anaesth. 2004;14(1):43–7.CrossRefGoogle Scholar
  240. 240.
    Garrard A, Campbell AE, Turley A, Hall JE. The effect of mechanically-induced cricoid force on lower oesophageal sphincter pressure in anaesthetised patients. Anaesthesia. 2004;59(5):435–9.CrossRefGoogle Scholar
  241. 241.
    Whittington RM, Robinson JS, Thompson JM. Prevention of fatal aspiration syndrome. Lancet. 1979;2(8143):630–1.CrossRefGoogle Scholar
  242. 242.
    Williamson R. Cricoid pressure. Can J Anaesth. 1989;36(5):601.CrossRefGoogle Scholar
  243. 243.
    Salem MR, Khorasani A, Saatee S, Crystal GJ, El-Orbany M. Gastric tubes and airway management in patients at risk of aspiration: history, current concepts, and proposal of an algorithm. Anesth Analg. 2014;118(3):569–79.CrossRefGoogle Scholar
  244. 244.
    Gobindram A, Clarke S. Cricoid pressure: should we lay off the pressure? Anaesthesia. 2008;63(11):1258–9.CrossRefGoogle Scholar
  245. 245.
    Snow RG, Nunn JF. Induction of anaesthesia in the foot-down position for patients with a full stomach. Br J Anaesth. 1959;31:493–7.CrossRefGoogle Scholar
  246. 246.
    Hodges RJ, Bennett JR, Tunstall ME, Knight RF. General anaesthesia for operative obstetrics: with special reference to the use of thiopentone and suxamethonium. Br J Anaesth. 1959;31(4):152–63.CrossRefGoogle Scholar
  247. 247.
    Takenaka I, Aoyama K, Iwagaki T. Combining head-neck position and head-down tilt to prevent pulmonary aspiration of gastric contents during induction of anaesthesia: a volunteer and manikin study. Eur J Anaesthesiol. 2012;29(8):380–5.CrossRefGoogle Scholar
  248. 248.
    Agnew NM, Kendall JB, Akrofi M, et al. Gastroesophageal reflux and tracheal aspiration in the thoracotomy position: should ranitidine premedication be routine? Anesth Analg. 2002;95(6):1645–9, table of contentsCrossRefGoogle Scholar
  249. 249.
    Blunt MC, Young PJ, Patil A, Haddock A. Gel lubrication of the tracheal tube cuff reduces pulmonary aspiration. Anesthesiology. 2001;95(2):377–81.CrossRefGoogle Scholar
  250. 250.
    Sanjay PS, Miller SA, Corry PR, Russell GN, Pennefather SH. The effect of gel lubrication on cuff leakage of double lumen tubes during thoracic surgery. Anaesthesia. 2006;61(2):133–7.CrossRefGoogle Scholar
  251. 251.
    Shackcloth MJ, McCarron E, Kendall J, et al. Randomized clinical trial to determine the effect of nasogastric drainage on tracheal acid aspiration following oesophagectomy. Br J Surg. 2006;93(5):547–52.CrossRefGoogle Scholar
  252. 252.
    Michelet P, D’Journo XB, Roch A, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105(5):911–9.CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Tsujimoto H, Takahata R, Nomura S, et al. Predictive value of pleural and serum interleukin-6 levels for pneumonia and hypo-oxygenations after esophagectomy. J Surg Res. 2013;182(2):e61–7.CrossRefGoogle Scholar
  254. 254.
    D’Journo XB, Michelet P, Marin V, et al. An early inflammatory response to oesophagectomy predicts the occurrence of pulmonary complications. Eur J Cardiothorac Surg. 2010;37(5):1144–51.CrossRefGoogle Scholar
  255. 255.
    Kalimeris K, Christodoulaki K, Karakitsos P, et al. Influence of propofol and volatile anaesthetics on the inflammatory response in the ventilated lung. Acta Anaesthesiol Scand. 2011;55(6):740–8.CrossRefGoogle Scholar
  256. 256.
    Ferrando C, Aguilar G, Piqueras L, Soro M, Moreno J, Belda FJ. Sevoflurane, but not propofol, reduces the lung inflammatory response and improves oxygenation in an acute respiratory distress syndrome model: a randomised laboratory study. Eur J Anaesthesiol. 2013;30(8):455–63.CrossRefGoogle Scholar
  257. 257.
    Kellner P, Muller M, Piegeler T, et al. Sevoflurane abolishes oxygenation impairment in a long-term rat model of acute lung injury. Anesth Analg. 2017;124(1):194–203.CrossRefGoogle Scholar
  258. 258.
    Wakabayashi S, Yamaguchi K, Kumakura S, et al. Effects of anesthesia with sevoflurane and propofol on the cytokine/chemokine production at the airway epithelium during esophagectomy. Int J Mol Med. 2014;34(1):137–44.CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Lee JJ, Kim GH, Kim JA, et al. Comparison of pulmonary morbidity using sevoflurane or propofol-remifentanil anesthesia in an Ivor Lewis operation. J Cardiothorac Vasc Anesth. 2012;26(5):857–62.CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Potocnik I, Novak Jankovic V, Sostaric M, et al. Antiinflammatory effect of sevoflurane in open lung surgery with one-lung ventilation. Croat Med J. 2014;55(6):628–37.CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Schilling T, Kozian A, Senturk M, et al. Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory response in thoracic surgical patients. Anesthesiology. 2011;115(1):65–74.CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Beck-Schimmer B, Bonvini JM, Braun J, et al. Which anesthesia regimen is best to reduce morbidity and mortality in lung surgery?: a multicenter randomized controlled trial. Anesthesiology. 2016;125(2):313–21.CrossRefPubMedPubMedCentralGoogle Scholar
  263. 263.
    Benumof JL. Difficult tubes and difficult airways. J Cardiothorac Vasc Anesth. 1998;12(2):131–2.CrossRefGoogle Scholar
  264. 264.
    Vanner R. Arndt endobronchial blocker during oesophagectomy. Anaesthesia. 2005;60(3):295–6.CrossRefGoogle Scholar
  265. 265.
    Chen A, Lai HY, Lin PC, Chen TY, Shyr MH. GlideScope-assisted double-lumen endobronchial tube placement in a patient with an unanticipated difficult airway. J Cardiothorac Vasc Anesth. 2008;22(1):170–2.CrossRefGoogle Scholar
  266. 266.
    Russell T, Slinger P, Roscoe A, McRae K, Van Rensburg A. A randomised controlled trial comparing the GlideScope((R)) and the Macintosh laryngoscope for double-lumen endobronchial intubation. Anaesthesia. 2013;68(12):1253–8.CrossRefGoogle Scholar
  267. 267.
    Yao WL, Wan L, Xu H, et al. A comparison of the McGrath(R) series 5 videolaryngoscope and Macintosh laryngoscope for double-lumen tracheal tube placement in patients with a good glottic view at direct laryngoscopy. Anaesthesia. 2015;70(7):810–7.CrossRefGoogle Scholar
  268. 268.
    Yamazaki T, Ohsumi H. The airway scope is a practical intubation device for a double-lumen tube during rapid-sequence induction. J Cardiothorac Vasc Anesth. 2009;23(6):926.CrossRefGoogle Scholar
  269. 269.
    Wasem S, Lazarus M, Hain J, et al. Comparison of the Airtraq and the Macintosh laryngoscope for double-lumen tube intubation: a randomised clinical trial. Eur J Anaesthesiol. 2013;30(4):180–6.CrossRefGoogle Scholar
  270. 270.
    Hirabayashi Y, Seo N. The Airtraq laryngoscope for placement of double-lumen endobronchial tube. Can J Anaesth. 2007;54(11):955–7.CrossRefGoogle Scholar
  271. 271.
    Purugganan RV, Jackson TA, Heir JS, Wang H, Cata JP. Video laryngoscopy versus direct laryngoscopy for double-lumen endotracheal tube intubation: a retrospective analysis. J Cardiothorac Vasc Anesth. 2012;26(5):845–8.CrossRefGoogle Scholar
  272. 272.
    Angie Ho CY, Chen CY, Yang MW, Liu HP. Use of the Arndt wire-guided endobronchial blocker via nasal for one-lung ventilation in patient with anticipated restricted mouth opening for esophagectomy. Eur J Cardiothorac Surg. 2005;28(1):174–5.CrossRefGoogle Scholar
  273. 273.
    Narayanaswamy M, McRae K, Slinger P, et al. Choosing a lung isolation device for thoracic surgery: a randomized trial of three bronchial blockers versus double-lumen tubes. Anesth Analg. 2009;108(4):1097–101.CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Bussieres JS, Somma J, Del Castillo JL, et al. Bronchial blocker versus left double-lumen endotracheal tube in video-assisted thoracoscopic surgery: a randomized-controlled trial examining time and quality of lung deflation. Can J Anaesth. 2016;63(7):818–27.CrossRefGoogle Scholar
  275. 275.
    Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723–40.CrossRefPubMedPubMedCentralGoogle Scholar
  276. 276.
    Brandstrup B, Svensen C, Engquist A. Hemorrhage and operation cause a contraction of the extracellular space needing replacement – evidence and implications? A systematic review. Surgery. 2006;139(3):419–32.CrossRefGoogle Scholar
  277. 277.
    Jacob M, Chappell D, Rehm M. The “third space” – fact or fiction? Best Pract Res Clin Anaesthesiol. 2009;23(2):145–57.CrossRefPubMedPubMedCentralGoogle Scholar
  278. 278.
    Chau EH, Slinger P. Perioperative fluid management for pulmonary resection surgery and esophagectomy. Semin Cardiothorac Vasc Anesth. 2014;18(1):36–44.CrossRefGoogle Scholar
  279. 279.
    Collins SR, Blank RS, Deatherage LS, Dull RO. Special article: the endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg. 2013;117(3):664–74.CrossRefPubMedPubMedCentralGoogle Scholar
  280. 280.
    Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth. 2002;89(4):622–32.CrossRefPubMedPubMedCentralGoogle Scholar
  281. 281.
    Kulemann B, Timme S, Seifert G, et al. Intraoperative crystalloid overload leads to substantial inflammatory infiltration of intestinal anastomoses-a histomorphological analysis. Surgery. 2013;154(3):596–603.CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Brandstrup B, Tonnesen H, Beier-Holgersen R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238(5):641–8.CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet. 2002;359(9320):1812–8.CrossRefPubMedGoogle Scholar
  284. 284.
    Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einav S, Matot I. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology. 2005;103(1):25–32.CrossRefPubMedPubMedCentralGoogle Scholar
  285. 285.
    Bernard A, Deschamps C, Allen MS, et al. Pneumonectomy for malignant disease: factors affecting early morbidity and mortality. J Thorac Cardiovasc Surg. 2001;121(6):1076–82.CrossRefGoogle Scholar
  286. 286.
    Licker M, de Perrot M, Spiliopoulos A, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97(6):1558–65.CrossRefPubMedPubMedCentralGoogle Scholar
  287. 287.
    Fernandez-Perez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105(1):14–8.CrossRefPubMedPubMedCentralGoogle Scholar
  288. 288.
    Wei S, Tian J, Song X, Chen Y. Association of perioperative fluid balance and adverse surgical outcomes in esophageal cancer and esophagogastric junction cancer. Ann Thorac Surg. 2008;86(1):266–72.CrossRefGoogle Scholar
  289. 289.
    Kita T, Mammoto T, Kishi Y. Fluid management and postoperative respiratory disturbances in patients with transthoracic esophagectomy for carcinoma. J Clin Anesth. 2002;14(4):252–6.CrossRefGoogle Scholar
  290. 290.
    Schol PB, Terink IM, Lance MD, Scheepers HC. Liberal or restrictive fluid management during elective surgery: a systematic review and meta-analysis. J Clin Anesth. 2016;35:26–39.CrossRefGoogle Scholar
  291. 291.
    Glatz T, Kulemann B, Marjanovic G, Bregenzer S, Makowiec F, Hoeppner J. Postoperative fluid overload is a risk factor for adverse surgical outcome in patients undergoing esophagectomy for esophageal cancer: a retrospective study in 335 patients. BMC Surg. 2017;17(1):6.CrossRefPubMedPubMedCentralGoogle Scholar
  292. 292.
    Xing X, Gao Y, Wang H, et al. Correlation of fluid balance and postoperative pulmonary complications in patients after esophagectomy for cancer. J Thorac Dis. 2015;7(11):1986–93.PubMedPubMedCentralGoogle Scholar
  293. 293.
    Ahn HJ, Kim JA, Lee AR, Yang M, Jung HJ, Heo B. The risk of acute kidney injury from fluid restriction and hydroxyethyl starch in thoracic surgery. Anesth Analg. 2016;122(1):186–93.CrossRefPubMedPubMedCentralGoogle Scholar
  294. 294.
    Concha MR, Mertz VF, Cortinez LI, et al. The volume of lactated Ringer’s solution required to maintain preload and cardiac index during open and laparoscopic surgery. Anesth Analg. 2009;108(2):616–22.CrossRefGoogle Scholar
  295. 295.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.CrossRefPubMedPubMedCentralGoogle Scholar
  296. 296.
    Oohashi S, Endoh H. Does central venous pressure or pulmonary capillary wedge pressure reflect the status of circulating blood volume in patients after extended transthoracic esophagectomy? J Anesth. 2005;19(1):21–5.CrossRefGoogle Scholar
  297. 297.
    Gan TJ, Soppitt A, Maroof M, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97(4):820–6.CrossRefGoogle Scholar
  298. 298.
    Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care. 2005;9(6):R687–93.CrossRefPubMedPubMedCentralGoogle Scholar
  299. 299.
    Donati A, Loggi S, Preiser JC, et al. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest. 2007;132(6):1817–24.CrossRefGoogle Scholar
  300. 300.
    Lopes MR, Oliveira MA, Pereira VO, Lemos IP, Auler JO Jr, Michard F. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11(5):R100.CrossRefPubMedPubMedCentralGoogle Scholar
  301. 301.
    Noblett SE, Snowden CP, Shenton BK, Horgan AF. Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg. 2006;93(9):1069–76.CrossRefGoogle Scholar
  302. 302.
    Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;130(4):423–9.CrossRefGoogle Scholar
  303. 303.
    Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997;315(7113):909–12.CrossRefPubMedPubMedCentralGoogle Scholar
  304. 304.
    McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, Singer M. Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ. 2004;329(7460):258.CrossRefPubMedPubMedCentralGoogle Scholar
  305. 305.
    Wakeling HG, McFall MR, Jenkins CS, et al. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005;95(5):634–42.CrossRefGoogle Scholar
  306. 306.
    Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med. 2007;33(1):96–103.CrossRefGoogle Scholar
  307. 307.
    Bundgaard-Nielsen M, Holte K, Secher NH, Kehlet H. Monitoring of peri-operative fluid administration by individualized goal-directed therapy. Acta Anaesthesiol Scand. 2007;51(3):331–40.CrossRefGoogle Scholar
  308. 308.
    Gurgel ST, do Nascimento P Jr. Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg. 2011;112(6):1384–91.CrossRefPubMedPubMedCentralGoogle Scholar
  309. 309.
    Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112(6):1392–402.CrossRefPubMedPubMedCentralGoogle Scholar
  310. 310.
    Pearse RM, Harrison DA, MacDonald N, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311(21):2181–90.CrossRefGoogle Scholar
  311. 311.
    Thiele RH, Raghunathan K, Brudney CS, et al. American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on perioperative fluid management within an enhanced recovery pathway for colorectal surgery. Perioper Med (Lond). 2016;5:24.CrossRefGoogle Scholar
  312. 312.
    Manecke GR. Edwards FloTrac sensor and Vigileo monitor: easy, accurate, reliable cardiac output assessment using the arterial pulse wave. Expert Rev Med Devices. 2005;2(5):523–7.CrossRefGoogle Scholar
  313. 313.
    Cannesson M, Musard H, Desebbe O, et al. The ability of stroke volume variations obtained with Vigileo/FloTrac system to monitor fluid responsiveness in mechanically ventilated patients. Anesth Analg. 2009;108(2):513–7.CrossRefGoogle Scholar
  314. 314.
    Manecke GR Jr, Auger WR. Cardiac output determination from the arterial pressure wave: clinical testing of a novel algorithm that does not require calibration. J Cardiothorac Vasc Anesth. 2007;21(1):3–7.CrossRefGoogle Scholar
  315. 315.
    Godje O, Hoke K, Goetz AE, et al. Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med. 2002;30(1):52–8.CrossRefGoogle Scholar
  316. 316.
    Haas S, Eichhorn V, Hasbach T, et al. Goal-directed fluid therapy using stroke volume variation does not result in pulmonary fluid overload in thoracic surgery requiring one-lung ventilation. Crit Care Res Pract. 2012;2012:687018.PubMedPubMedCentralGoogle Scholar
  317. 317.
    Lee JH, Jeon Y, Bahk JH, et al. Pulse pressure variation as a predictor of fluid responsiveness during one-lung ventilation for lung surgery using thoracotomy: randomised controlled study. Eur J Anaesthesiol. 2011;28(1):39–44.CrossRefPubMedPubMedCentralGoogle Scholar
  318. 318.
    Fu Q, Duan M, Zhao F, Mi W. Evaluation of stroke volume variation and pulse pressure variation as predictors of fluid responsiveness in patients undergoing protective one-lung ventilation. Drug Discov Ther. 2015;9(4):296–302.CrossRefGoogle Scholar
  319. 319.
    Suehiro K, Okutani R. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing one-lung ventilation. J Cardiothorac Vasc Anesth. 2010;24(5):772–5.CrossRefGoogle Scholar
  320. 320.
    Suehiro K, Okutani R. Influence of tidal volume for stroke volume variation to predict fluid responsiveness in patients undergoing one-lung ventilation. J Anesth. 2011;25(5):777–80.CrossRefPubMedPubMedCentralGoogle Scholar
  321. 321.
    Ishihara H, Hashiba E, Okawa H, Saito J, Kasai T, Tsubo T. Neither dynamic, static, nor volumetric variables can accurately predict fluid responsiveness early after abdominothoracic esophagectomy. Perioper Med (Lond). 2013;2(1):3.CrossRefGoogle Scholar
  322. 322.
    Kobayashi M, Koh M, Irinoda T, Meguro E, Hayakawa Y, Takagane A. Stroke volume variation as a predictor of intravascular volume depression and possible hypotension during the early postoperative period after esophagectomy. Ann Surg Oncol. 2009;16(5):1371–7.CrossRefGoogle Scholar
  323. 323.
    Veelo DP, van Berge Henegouwen MI, Ouwehand KS, et al. Effect of goal-directed therapy on outcome after esophageal surgery: a quality improvement study. PLoS One. 2017;12(3):e0172806.CrossRefPubMedPubMedCentralGoogle Scholar
  324. 324.
    Kimberger O, Arnberger M, Brandt S, et al. Goal-directed colloid administration improves the microcirculation of healthy and perianastomotic colon. Anesthesiology. 2009;110(3):496–504.CrossRefGoogle Scholar
  325. 325.
    Moretti EW, Robertson KM, El-Moalem H, Gan TJ. Intraoperative colloid administration reduces postoperative nausea and vomiting and improves postoperative outcomes compared with crystalloid administration. Anesth Analg. 2003;96(2):611–7, table of contentsGoogle Scholar
  326. 326.
    Jungheinrich C, Scharpf R, Wargenau M, Bepperling F, Baron JF. The pharmacokinetics and tolerability of an intravenous infusion of the new hydroxyethyl starch 130/0.4 (6%, 500 mL) in mild-to-severe renal impairment. Anesth Analg. 2002;95(3):544–51, table of contentsGoogle Scholar
  327. 327.
    Boldt J, Brosch C, Ducke M, Papsdorf M, Lehmann A. Influence of volume therapy with a modern hydroxyethyl starch preparation on kidney function in cardiac surgery patients with compromised renal function: a comparison with human albumin. Crit Care Med. 2007;35(12):2740–6.CrossRefGoogle Scholar
  328. 328.
    Mukhtar A, Aboulfetouh F, Obayah G, et al. The safety of modern hydroxyethyl starch in living donor liver transplantation: a comparison with human albumin. Anesth Analg. 2009;109(3):924–30.CrossRefGoogle Scholar
  329. 329.
    Gandhi SD, Weiskopf RB, Jungheinrich C, et al. Volume replacement therapy during major orthopedic surgery using Voluven (hydroxyethyl starch 130/0.4) or hetastarch. Anesthesiology. 2007;106(6):1120–7.CrossRefGoogle Scholar
  330. 330.
    Gallandat Huet RC, Siemons AW, Baus D, et al. A novel hydroxyethyl starch (Voluven) for effective perioperative plasma volume substitution in cardiac surgery. Can J Anaesth. 2000;47(12):1207–15.CrossRefGoogle Scholar
  331. 331.
    Nohe B, Johannes T, Reutershan J, et al. Synthetic colloids attenuate leukocyte-endothelial interactions by inhibition of integrin function. Anesthesiology. 2005;103(4):759–67.CrossRefGoogle Scholar
  332. 332.
    Ozturk T, Onur E, Cerrahoglu M, Calgan M, Nizamoglu F, Civi M. Immune and inflammatory role of hydroxyethyl starch 130/0.4 and fluid gelatin in patients undergoing coronary surgery. Cytokine. 2015;74(1):69–75.CrossRefGoogle Scholar
  333. 333.
    Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. New Engl J Med. 2012;367(2):124–34.CrossRefGoogle Scholar
  334. 334.
    Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. New Engl J Med. 2012;367(20):1901–11.CrossRefGoogle Scholar
  335. 335.
    Raghunathan K, Miller TE, Shaw AD. Intravenous starches: is suspension the best solution? Anesth Analg. 2014;119(3):731–6.CrossRefGoogle Scholar
  336. 336.
    Annane D, Siami S, Jaber S, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310(17):1809–17.CrossRefGoogle Scholar
  337. 337.
    Jacob M, Fellahi JL, Chappell D, Kurz A. The impact of hydroxyethyl starches in cardiac surgery: a meta-analysis. Crit Care. 2014;18(6):656.CrossRefPubMedPubMedCentralGoogle Scholar
  338. 338.
    Chappell D, Jacob M. Hydroxyethyl starch – the importance of being earnest. Scand J Trauma Resusc Emerg Med. 2013;21:61.CrossRefPubMedPubMedCentralGoogle Scholar
  339. 339.
    Jorgenson A, Jaeger JM, de Souza DG, Blank RS. Acute intraoperative pulmonary embolism: an unusual cause of hypoxemia during one-lung ventilation. J Cardiothorac Vasc Anesth. 2011;25(6):1113–5.CrossRefGoogle Scholar
  340. 340.
    Bechtold ML, Nguyen DL, Palmer LB, Kiraly LN, Martindale RG, McClave SA. Nasal bridles for securing nasoenteric tubes: a meta-analysis. Nutr Clin Pract. 2014;29(5):667–71.CrossRefPubMedPubMedCentralGoogle Scholar
  341. 341.
    Faulx AL, Catanzaro A, Zyzanski S, et al. Patient tolerance and acceptance of unsedated ultrathin esophagoscopy. Gastrointest Endosc. 2002;55(6):620–3.CrossRefGoogle Scholar
  342. 342.
    Bush CM, Postma GN. Transnasal esophagoscopy. Otolaryngol Clin N Am. 2013;46(1):41–52.CrossRefGoogle Scholar
  343. 343.
    Streckfuss A, Bosch N, Plinkert PK, Baumann I. Transnasal flexible esophagoscopy (TNE): an evaluation of the patient’s experience and time management. Eur Arch Otorhinolaryngol. 2014;271(2):323–8.CrossRefGoogle Scholar
  344. 344.
    Nguyen ST, Cabrales RE, Bashour CA, et al. Benzocaine-induced methemoglobinemia. Anesth Analg. 2000;90(2):369–71.Google Scholar
  345. 345.
    Gunaratnam NT, Vazquez-Sequeiros E, Gostout CJ, Alexander GL. Methemoglobinemia related to topical benzocaine use: is it time to reconsider the empiric use of topical anesthesia before sedated EGD? Gastrointest Endosc. 2000;52(5):692–3.CrossRefGoogle Scholar
  346. 346.
    Goudra B, Singh PM. Airway management during upper GI endoscopic procedures: state of the art review. Dig Dis Sci. 2017;62(1):45–53.CrossRefGoogle Scholar
  347. 347.
    Busick T, Kussman M, Scheidt T, Tobias JD. Preliminary experience with dexmedetomidine for monitored anesthesia care during ENT surgical procedures. Am J Ther. 2008;15(6):520–7.CrossRefGoogle Scholar
  348. 348.
    Nonaka S, Kawaguchi Y, Oda I, et al. Safety and effectiveness of propofol-based monitored anesthesia care without intubation during endoscopic submucosal dissection for early gastric and esophageal cancers. Dig Endosc. 2015;27(6):665–73.CrossRefGoogle Scholar
  349. 349.
    Gitzelmann CA, Gysin C, Weiss M. Dorsal flexion of head and neck for rigid oesophagoscopy – a caution for hidden foreign bodies dropped into the epipharynx. Acta Anaesthesiol Scand. 2003;47(9):1178–9.CrossRefGoogle Scholar
  350. 350.
    Lee SH. The role of oesophageal stenting in the non-surgical management of oesophageal strictures. Br J Radiol. 2001;74(886):891–900.CrossRefGoogle Scholar
  351. 351.
    Verschuur EM, Kuipers EJ, Siersema PD. Esophageal stents for malignant strictures close to the upper esophageal sphincter. Gastrointest Endosc. 2007;66(6):1082–90.CrossRefGoogle Scholar
  352. 352.
    Freeman RK, Van Woerkom JM, Ascioti AJ. Esophageal stent placement for the treatment of iatrogenic intrathoracic esophageal perforation. Ann Thorac Surg. 2007;83(6):2003–7; discussion 2007–8CrossRefGoogle Scholar
  353. 353.
    Annese V, Bassotti G. Non-surgical treatment of esophageal achalasia. World J Gastroenterol. 2006;12(36):5763–6.CrossRefPubMedPubMedCentralGoogle Scholar
  354. 354.
    Uppal DS, Wang AY. Update on the endoscopic treatments for achalasia. World J Gastroenterol. 2016;22(39):8670–83.CrossRefPubMedPubMedCentralGoogle Scholar
  355. 355.
    Worrell S, DeMeester SR. Endoscopic resection and ablation for early-stage esophageal cancer. Thorac Surg Clin. 2016;26(2):173–6.CrossRefGoogle Scholar
  356. 356.
    Calverley RK, Johnston AE. The anaesthetic management of tracheo-oesophageal fistula: a review of ten years’ experience. Can Anaesth Soc J. 1972;19(3):270–82.CrossRefGoogle Scholar
  357. 357.
    Baraka A, Slim M. Cardiac arrest during IPPV in a newborn with tracheoesophageal fistula. Anesthesiology. 1970;32(6):564–5.CrossRefGoogle Scholar
  358. 358.
    Horishita T, Ogata J, Minami K. Unique anesthetic management of a patient with a large tracheoesophageal fistula using fiberoptic bronchoscopy. Anesth Analg. 2003;97(6):1856.CrossRefGoogle Scholar
  359. 359.
    Chan CS. Anaesthetic management during repair of tracheo-oesophageal fistula. Anaesthesia. 1984;39(2):158–60.CrossRefGoogle Scholar
  360. 360.
    Truong A. Esophagoscopy to confirm tracheal tube position in a patient with a large tracheoesophageal fistula. Anesth Analg. 2011;113(5):1284–5.CrossRefGoogle Scholar
  361. 361.
    Ichinose M, Sakai H, Miyazaki I, et al. Independent lung ventilation combined with HFOV for a patient suffering from tracheo-gastric roll fistula. J Anesth. 2008;22(3):282–5.CrossRefGoogle Scholar
  362. 362.
    Patti MG, Wiener-Kronish JP, Way LW, Pellegrini CA. Impact of transhiatal esophagectomy on cardiac and respiratory function. Am J Surg. 1991;162(6):563–6; discussion 566–7CrossRefGoogle Scholar
  363. 363.
    Malhotra SK, Kaur RP, Gupta NM, Grover A, Ramprabu K, Nakra D. Incidence and types of arrhythmias after mediastinal manipulation during transhiatal esophagectomy. Ann Thorac Surg. 2006;82(1):298–302.CrossRefGoogle Scholar
  364. 364.
    Fumagalli U, Melis A, Balazova J, Lascari V, Morenghi E, Rosati R. Intra-operative hypotensive episodes may be associated with post-operative esophageal anastomotic leak. Updates Surg. 2016;68(2):185–90.CrossRefGoogle Scholar
  365. 365.
    Ikeda Y, Niimi M, Kan S, Shatari T, Takami H, Kodaira S. Clinical significance of tissue blood flow during esophagectomy by laser Doppler flowmetry. J Thorac Cardiovasc Surg. 2001;122(6):1101–6.CrossRefGoogle Scholar
  366. 366.
    Kusano C, Baba M, Takao S, et al. Oxygen delivery as a factor in the development of fatal postoperative complications after oesophagectomy. Br J Surg. 1997;84(2):252–7.CrossRefGoogle Scholar
  367. 367.
    Urschel JD. Esophagogastrostomy anastomotic leaks complicating esophagectomy: a review. Am J Surg. 1995;169(6):634–40.CrossRefGoogle Scholar
  368. 368.
    Koyanagi K, Ozawa S, Oguma J, et al. Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence: new predictive evaluation of anastomotic leakage after esophagectomy. Medicine (Baltimore). 2016;95(30):e4386.CrossRefGoogle Scholar
  369. 369.
    Pham TH, Perry KA, Enestvedt CK, et al. Decreased conduit perfusion measured by spectroscopy is associated with anastomotic complications. Ann Thorac Surg. 2011;91(2):380–5.CrossRefGoogle Scholar
  370. 370.
    Al-Rawi OY, Pennefather SH, Page RD, Dave I, Russell GN. The effect of thoracic epidural bupivacaine and an intravenous adrenaline infusion on gastric tube blood flow during esophagectomy. Anesth Analg. 2008;106(3):884–7, table of contentsCrossRefPubMedPubMedCentralGoogle Scholar
  371. 371.
    Klijn E, Niehof S, de Jonge J, Gommers D, Ince C, van Bommel J. The effect of perfusion pressure on gastric tissue blood flow in an experimental gastric tube model. Anesth Analg. 2010;110(2):541–6.CrossRefGoogle Scholar
  372. 372.
    Pathak D, Pennefather SH, Russell GN, et al. Phenylephrine infusion improves blood flow to the stomach during oesophagectomy in the presence of a thoracic epidural analgesia. Eur J Cardiothorac Surg. 2013;44(1):130–3.CrossRefPubMedPubMedCentralGoogle Scholar
  373. 373.
    Bartels H, Stein HJ, Siewert JR. Early extubation vs. late extubation after esophagus resection: a randomized, prospective study. Langenbecks Arch Chir Suppl Kongressbd. 1998;115:1074–6.Google Scholar
  374. 374.
    Caldwell MT, Murphy PG, Page R, Walsh TN, Hennessy TP. Timing of extubation after oesophagectomy. Br J Surg. 1993;80(12):1537–9.CrossRefGoogle Scholar
  375. 375.
    Lanuti M, de Delva PE, Maher A, et al. Feasibility and outcomes of an early extubation policy after esophagectomy. Ann Thorac Surg. 2006;82(6):2037–41.CrossRefPubMedPubMedCentralGoogle Scholar
  376. 376.
    Jiang K, Cheng L, Wang JJ, Li JS, Nie J. Fast track clinical pathway implications in esophagogastrectomy. World J Gastroenterol. 2009;15(4):496–501.CrossRefPubMedPubMedCentralGoogle Scholar
  377. 377.
    Chandrashekar MV, Irving M, Wayman J, Raimes SA, Linsley A. Immediate extubation and epidural analgesia allow safe management in a high-dependency unit after two-stage oesophagectomy. Results of eight years of experience in a specialized upper gastrointestinal unit in a district general hospital. Br J Anaesth. 2003;90(4):474–9.CrossRefGoogle Scholar
  378. 378.
    Greco M, Capretti G, Beretta L, Gemma M, Pecorelli N, Braga M. Enhanced recovery program in colorectal surgery: a meta-analysis of randomized controlled trials. World J Surg. 2014;38(6):1531–41.CrossRefGoogle Scholar
  379. 379.
    Cooke DT, Calhoun RF, Kuderer V, David EA. A defined esophagectomy perioperative clinical care process can improve outcomes and costs. Am Surg. 2017;83(1):103–11.Google Scholar
  380. 380.
    Schmidt HM, El Lakis MA, Markar SR, Hubka M, Low DE. Accelerated recovery within standardized recovery pathways after esophagectomy: a prospective cohort study assessing the effects of early discharge on outcomes, readmissions, patient satisfaction, and costs. Ann Thorac Surg. 2016;102(3):931–9.CrossRefGoogle Scholar
  381. 381.
    Markar SR, Karthikesalingam A, Low DE. Enhanced recovery pathways lead to an improvement in postoperative outcomes following esophagectomy: systematic review and pooled analysis. Dis Esophagus. 2015;28(5):468–75.CrossRefGoogle Scholar
  382. 382.
    Brock H, Rieger R, Gabriel C, Polz W, Moosbauer W, Necek S. Haemodynamic changes during thoracoscopic surgery the effects of one-lung ventilation compared with carbon dioxide insufflation. Anaesthesia. 2000;55(1):10–6.CrossRefGoogle Scholar
  383. 383.
    Wolfer RS, Krasna MJ, Hasnain JU, McLaughlin JS. Hemodynamic effects of carbon dioxide insufflation during thoracoscopy. Ann Thorac Surg. 1994;58(2):404–7; discussion 407–8CrossRefGoogle Scholar
  384. 384.
    Martin LW, Hofstetter W, Swisher SG, Roth JA. Management of intrathoracic leaks following esophagectomy. Adv Surg. 2006;40:173–90.CrossRefGoogle Scholar
  385. 385.
    Amar D, Burt ME, Bains MS, Leung DH. Symptomatic tachydysrhythmias after esophagectomy: incidence and outcome measures. Ann Thorac Surg. 1996;61(5):1506–9.CrossRefGoogle Scholar
  386. 386.
    Murthy SC, Law S, Whooley BP, Alexandrou A, Chu KM, Wong J. Atrial fibrillation after esophagectomy is a marker for postoperative morbidity and mortality. J Thorac Cardiovasc Surg. 2003;126(4):1162–7.CrossRefGoogle Scholar
  387. 387.
    Chin JH, Moon YJ, Jo JY, et al. Association between postoperatively developed atrial fibrillation and long-term mortality after esophagectomy in esophageal cancer patients: an observational study. PLoS One. 2016;11(5):e0154931.CrossRefPubMedPubMedCentralGoogle Scholar
  388. 388.
    Vaporciyan AA, Correa AM, Rice DC, et al. Risk factors associated with atrial fibrillation after noncardiac thoracic surgery: analysis of 2588 patients. J Thorac Cardiovasc Surg. 2004;127(3):779–86.CrossRefGoogle Scholar
  389. 389.
    Lohani KR, Nandipati KC, Rollins SE, et al. Transthoracic approach is associated with increased incidence of atrial fibrillation after esophageal resection. Surg Endosc. 2015;29(7):2039–45.CrossRefGoogle Scholar
  390. 390.
    Ma JY, Wang Y, Zhao YF, et al. Atrial fibrillation after surgery for esophageal carcinoma: clinical and prognostic significance. World J Gastroenterol. 2006;12(3):449–52.CrossRefPubMedPubMedCentralGoogle Scholar
  391. 391.
    Sedrakyan A, Treasure T, Browne J, Krumholz H, Sharpin C, van der Meulen J. Pharmacologic prophylaxis for postoperative atrial tachyarrhythmia in general thoracic surgery: evidence from randomized clinical trials. J Thorac Cardiovasc Surg. 2005;129(5):997–1005.CrossRefGoogle Scholar
  392. 392.
    Tisdale JE, Wroblewski HA, Wall DS, et al. A randomized, controlled study of amiodarone for prevention of atrial fibrillation after transthoracic esophagectomy. J Thorac Cardiovasc Surg. 2010;140(1):45–51.CrossRefGoogle Scholar
  393. 393.
    Law SY, Fok M, Wong J. Risk analysis in resection of squamous cell carcinoma of the esophagus. World J Surg. 1994;18(3):339–46.CrossRefGoogle Scholar
  394. 394.
    Law S, Wong KH, Kwok KF, Chu KM, Wong J. Predictive factors for postoperative pulmonary complications and mortality after esophagectomy for cancer. Ann Surg. 2004;240(5):791–800.CrossRefPubMedPubMedCentralGoogle Scholar
  395. 395.
    Ferguson MK, Durkin AE. Preoperative prediction of the risk of pulmonary complications after esophagectomy for cancer. J Thorac Cardiovasc Surg. 2002;123(4):661–9.CrossRefGoogle Scholar
  396. 396.
    Bailey SH, Bull DA, Harpole DH, et al. Outcomes after esophagectomy: a ten-year prospective cohort. Ann Thorac Surg. 2003;75(1):217–22; discussion 222CrossRefGoogle Scholar
  397. 397.
    Muller JM, Erasmi H, Stelzner M, Zieren U, Pichlmaier H. Surgical therapy of oesophageal carcinoma. Br J Surg. 1990;77(8):845–57.CrossRefGoogle Scholar
  398. 398.
    Molena D, Mungo B, Stem M, Lidor AO. Incidence and risk factors for respiratory complications in patients undergoing esophagectomy for malignancy: a NSQIP analysis. Semin Thorac Cardiovasc Surg. 2014;26(4):287–94.CrossRefGoogle Scholar
  399. 399.
    Jiao WJ, Wang TY, Gong M, Pan H, Liu YB, Liu ZH. Pulmonary complications in patients with chronic obstructive pulmonary disease following transthoracic esophagectomy. World J Gastroenterol. 2006;12(16):2505–9.CrossRefPubMedPubMedCentralGoogle Scholar
  400. 400.
    Bludau M, Holscher AH, Bollschweiler E, et al. Preoperative airway colonization prior to transthoracic esophagectomy predicts postoperative pulmonary complications. Langenbecks Arch Surg. 2015;400(6):707–14.CrossRefGoogle Scholar
  401. 401.
    Tandon S, Batchelor A, Bullock R, et al. Peri-operative risk factors for acute lung injury after elective oesophagectomy. Br J Anaesth. 2001;86(5):633–8.CrossRefPubMedPubMedCentralGoogle Scholar
  402. 402.
    Howells P, Thickett D, Knox C, et al. The impact of the acute respiratory distress syndrome on outcome after oesophagectomy. Br J Anaesth. 2016;117(3):375–81.CrossRefGoogle Scholar
  403. 403.
    Nakanishi K, Takeda S, Terajima K, Takano T, Ogawa R. Myocardial dysfunction associated with proinflammatory cytokines after esophageal resection. Anesth Analg. 2000;91(2):270–5.Google Scholar
  404. 404.
    Kooguchi K, Kobayashi A, Kitamura Y, et al. Elevated expression of inducible nitric oxide synthase and inflammatory cytokines in the alveolar macrophages after esophagectomy. Crit Care Med. 2002;30(1):71–6.CrossRefGoogle Scholar
  405. 405.
    Reid PT, Donnelly SC, MacGregor IR, et al. Pulmonary endothelial permeability and circulating neutrophil-endothelial markers in patients undergoing esophagogastrectomy. Crit Care Med. 2000;28(9):3161–5.CrossRefGoogle Scholar
  406. 406.
    Rocker GM, Wiseman MS, Pearson D, Shale DJ. Neutrophil degranulation and increased pulmonary capillary permeability following oesophagectomy: a model of early lung injury in man. Br J Surg. 1988;75(9):883–6.CrossRefGoogle Scholar
  407. 407.
    Donnelly SC, Strieter RM, Kunkel SL, et al. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet. 1993;341(8846):643–7.CrossRefGoogle Scholar
  408. 408.
    Hay DW, Sarau HM. Interleukin-8 receptor antagonists in pulmonary diseases. Curr Opin Pharmacol. 2001;1(3):242–7.CrossRefGoogle Scholar
  409. 409.
    Zeilhofer HU, Schorr W. Role of interleukin-8 in neutrophil signaling. Curr Opin Hematol. 2000;7(3):178–82.CrossRefGoogle Scholar
  410. 410.
    Cree RT, Warnell I, Staunton M, et al. Alveolar and plasma concentrations of interleukin-8 and vascular endothelial growth factor following oesophagectomy. Anaesthesia. 2004;59(9):867–71.CrossRefGoogle Scholar
  411. 411.
    Tsukada K, Hasegawa T, Miyazaki T, et al. Predictive value of interleukin-8 and granulocyte elastase in pulmonary complication after esophagectomy. Am J Surg. 2001;181(2):167–71.CrossRefGoogle Scholar
  412. 412.
    Harada K, Ida S, Baba Y, et al. Prognostic and clinical impact of sarcopenia in esophageal squamous cell carcinoma. Dis Esophagus. 2016;29(6):627–33.CrossRefGoogle Scholar
  413. 413.
    Watanabe M, Ishimoto T, Baba Y, et al. Prognostic impact of body mass index in patients with squamous cell carcinoma of the esophagus. Ann Surg Oncol. 2013;20(12):3984–91.CrossRefGoogle Scholar
  414. 414.
    Yoshida N, Harada K, Baba Y, et al. Preoperative controlling nutritional status (CONUT) is useful to estimate the prognosis after esophagectomy for esophageal cancer. Langenbecks Arch Surg. 2017;402(2):333–41.CrossRefGoogle Scholar
  415. 415.
    Filip B, Scarpa M, Cavallin F, et al. Postoperative outcome after oesophagectomy for cancer: nutritional status is the missing ring in the current prognostic scores. Eur J Surg Oncol. 2015;41(6):787–94.CrossRefGoogle Scholar
  416. 416.
    Haverkort EB, Binnekade JM, Busch OR, van Berge Henegouwen MI, de Haan RJ, Gouma DJ. Presence and persistence of nutrition-related symptoms during the first year following esophagectomy with gastric tube reconstruction in clinically disease-free patients. World J Surg. 2010;34(12):2844–52.CrossRefPubMedPubMedCentralGoogle Scholar
  417. 417.
    Baker M, Halliday V, Williams RN, Bowrey DJ. A systematic review of the nutritional consequences of esophagectomy. Clin Nutr. 2016;35(5):987–94.CrossRefGoogle Scholar
  418. 418.
    Fujita T, Okada N, Kanamori J, et al. Thermogenesis induced by amino acid administration prevents intraoperative hypothermia and reduces postoperative infectious complications after thoracoscopic esophagectomy. Dis Esophagus. 2017;30(1):1–7.Google Scholar
  419. 419.
    Takesue T, Takeuchi H, Ogura M, et al. A prospective randomized trial of enteral nutrition after thoracoscopic esophagectomy for esophageal cancer. Ann Surg Oncol. 2015;22(Suppl 3):S802–9.CrossRefGoogle Scholar
  420. 420.
    Okamura A, Takeuchi H, Matsuda S, et al. Factors affecting cytokine change after esophagectomy for esophageal cancer. Ann Surg Oncol. 2015;22(9):3130–5.CrossRefGoogle Scholar
  421. 421.
    Wong CS, Aly EH. The effects of enteral immunonutrition in upper gastrointestinal surgery: a systematic review and meta-analysis. Int J Surg. 2016;29:137–50.CrossRefGoogle Scholar
  422. 422.
    Weijs TJ, Berkelmans GH, Nieuwenhuijzen GA, et al. Immediate postoperative oral nutrition following esophagectomy: a multicenter clinical trial. Ann Thorac Surg. 2016;102(4):1141–8.CrossRefGoogle Scholar
  423. 423.
    Berkelmans GH, Wilts BJ, Kouwenhoven EA, et al. Nutritional route in oesophageal resection trial II (NUTRIENT II): study protocol for a multicentre open-label randomised controlled trial. BMJ Open. 2016;6(8):e011979.CrossRefPubMedPubMedCentralGoogle Scholar
  424. 424.
    Nakatsuchi T, Otani M, Osugi H, Ito Y, Koike T. The necessity of chest physical therapy for thoracoscopic oesophagectomy. J Int Med Res. 2005;33(4):434–41.CrossRefGoogle Scholar
  425. 425.
    Lunardi AC, Cecconello I, Carvalho CR. Postoperative chest physical therapy prevents respiratory complications in patients undergoing esophagectomy. Rev Bras Fisioter. 2011;15(2):160–5.CrossRefGoogle Scholar
  426. 426.
    van Adrichem EJ, Meulenbroek RL, Plukker JT, Groen H, van Weert E. Comparison of two preoperative inspiratory muscle training programs to prevent pulmonary complications in patients undergoing esophagectomy: a randomized controlled pilot study. Ann Surg Oncol. 2014;21(7):2353–60.Google Scholar
  427. 427.
    Dettling DS, van der Schaaf M, Blom RL, Nollet F, Busch OR, van Berge Henegouwen MI. Feasibility and effectiveness of pre-operative inspiratory muscle training in patients undergoing oesophagectomy: a pilot study. Physiother Res Int. 2013;18(1):16–26.CrossRefGoogle Scholar
  428. 428.
    Michelet P, Roch A, D’Journo XB, et al. Effect of thoracic epidural analgesia on gastric blood flow after oesophagectomy. Acta Anaesthesiol Scand. 2007;51(5):587–94.CrossRefGoogle Scholar
  429. 429.
    Lazar G, Kaszaki J, Abraham S, et al. Thoracic epidural anesthesia improves the gastric microcirculation during experimental gastric tube formation. Surgery. 2003;134(5):799–805.CrossRefGoogle Scholar
  430. 430.
    Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg. 2015;121(2):302–18.CrossRefPubMedPubMedCentralGoogle Scholar
  431. 431.
    Brassard CL, Lohser J, Donati F, Bussieres JS. Step-by-step clinical management of one-lung ventilation: continuing professional development. Can J Anaesth. 2014;61(12):1103–21.CrossRefGoogle Scholar
  432. 432.
    Severgnini P, Selmo G, Lanza C, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. 2013;118(6):1307–21.CrossRefGoogle Scholar
  433. 433.
    Futier E, Constantin JM, Paugam-Burtz C, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. New Engl J Med. 2013;369(5):428–37.CrossRefPubMedPubMedCentralGoogle Scholar
  434. 434.
    Shen Y, Zhong M, Wu W, et al. The impact of tidal volume on pulmonary complications following minimally invasive esophagectomy: a randomized and controlled study. J Thorac Cardiovasc Surg. 2013;146(5):1267–73; discussion 1273–4CrossRefGoogle Scholar
  435. 435.
    Yang M, Ahn HJ, Kim K, et al. Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery?: a randomized controlled trial. Chest. 2011;139(3):530–7.CrossRefGoogle Scholar
  436. 436.
    Serpa Neto A, Hemmes SN, Barbas CS, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med. 2014;2(12):1007–15.CrossRefGoogle Scholar
  437. 437.
    Tsai JA, Lund M, Lundell L, Nilsson-Ekdahl K. One-lung ventilation during thoracoabdominal esophagectomy elicits complement activation. J Surg Res. 2009;152(2):331–7.CrossRefGoogle Scholar
  438. 438.
    Terragni PP, Del Sorbo L, Mascia L, et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology. 2009;111(4):826–35.CrossRefGoogle Scholar
  439. 439.
    Engelman E, Maeyens C. Effect of preoperative single-dose corticosteroid administration on postoperative morbidity following esophagectomy. J Gastrointest Surg. 2010;14(5):788–804.CrossRefGoogle Scholar
  440. 440.
    Gao Q, Mok HP, Wang WP, Xiao F, Chen LQ. Effect of perioperative glucocorticoid administration on postoperative complications following esophagectomy: a meta-analysis. Oncol Lett. 2014;7(2):349–56.CrossRefGoogle Scholar
  441. 441.
    Weijs TJ, Dieleman JM, Ruurda JP, Kroese AC, Knape HJ, van Hillegersberg R. The effect of perioperative administration of glucocorticoids on pulmonary complications after transthoracic oesophagectomy: a systematic review and meta-analysis. Eur J Anaesthesiol. 2014;31(12):685–94.CrossRefGoogle Scholar
  442. 442.
    Shyamsundar M, McAuley DF, Shields MO, et al. Effect of simvastatin on physiological and biological outcomes in patients undergoing esophagectomy: a randomized placebo-controlled trial. Ann Surg. 2014;259(1):26–31.CrossRefGoogle Scholar
  443. 443.
    Wang ZQ, Chen LQ, Yuan Y, et al. Effects of neutrophil elastase inhibitor in patients undergoing esophagectomy: a systematic review and meta-analysis. World J Gastroenterol. 2015;21(12):3720–30.CrossRefPubMedPubMedCentralGoogle Scholar
  444. 444.
    Tanaka E, Murata H, Minami H, Sumikawa K. Anesthetic management of peroral endoscopic myotomy for esophageal achalasia: a retrospective case series. J Anesth. 2014;28(3):456–9.CrossRefGoogle Scholar
  445. 445.
    Yang D, Pannu D, Zhang Q, White JD, Draganov PV. Evaluation of anesthesia management, feasibility and efficacy of peroral endoscopic myotomy (POEM) for achalasia performed in the endoscopy unit. Endosc Int Open. 2015;3(4):E289–95.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Randal S. Blank
    • 1
    Email author
  • Stephen R. Collins
    • 1
  • Julie L. Huffmyer
    • 1
  • J. Michael Jaeger
    • 1
  1. 1.Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations