Ultrasound for Vascular Access

  • James P. Lee
  • Joshua M. Zimmerman
  • Natalie A. SilvertonEmail author


The use of ultrasound for vascular access has been shown to decrease complications and improve success rates. Ultrasound guidance of internal jugular vein cannulation has become the standard of care, but the technique has still not been universally adapted. One of the barriers to the use of ultrasound is a lack of training among providers. In this chapter we will discuss the use of ultrasound for internal jugular, subclavian, and femoral vein, as well as radial artery cannulation, as these are the most common uses of this technology in daily practice.


Central line Ultrasound Vascular access Internal jugular Subclavian vein 

Supplementary material

Video 29.1

Describes the short axis to long axis technique for ultrasound-guided IJV cannulation (M4V 27079 kb)

Video 29.2

Describes a long axis approach for ultrasound-guided IJV cannulation (M4V 20391 kb)

Video 29.3

Describes a long axis approach for ultrasound-guided SCV cannulation (M4V 35146 kb)


  1. 1.
    Seldinger SI. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 1953;39(5):368–76.CrossRefGoogle Scholar
  2. 2.
    Yoffa D. Supraclavicular subclavian venepuncture and catheterisation. Lancet. 1965;2(7413):614–7.CrossRefGoogle Scholar
  3. 3.
    English IC, Frew RM, Pigott JF, Zaki M. Percutaneous catheterisation of the internal jugular vein. Anaesthesia. 1969;24(4):521–31.CrossRefGoogle Scholar
  4. 4.
    Denys BG, Uretsky BF. Anatomical variations of internal jugular vein location: impact on central venous access. Crit Care Med. 1991;19(12):1516–9.CrossRefGoogle Scholar
  5. 5.
    Gordon AC, Saliken JC, Johns D, Owen R, Gray RR. US-guided puncture of the internal jugular vein: complications and anatomic considerations. J Vasc Interv Radiol. 1998;9(2):333–8.CrossRefGoogle Scholar
  6. 6.
    Troianos CA, Kuwik RJ, Pasqual JR, Lim AJ, Odasso DP. Internal jugular vein and carotid artery anatomic relation as determined by ultrasonography. Anesthesiology. 1996;85(1):43–8.CrossRefGoogle Scholar
  7. 7.
    McGee DC, Gould MK. Preventing complications of central venous catheterization. N Engl J Med. 2003;348(12):1123–33.CrossRefGoogle Scholar
  8. 8.
    Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF. Ultrasound guidance versus anatomical landmarks for internal jugular vein catheterization. Cochrane Database Syst Rev. 2015;1:CD006962.Google Scholar
  9. 9.
    Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF. Ultrasound guidance versus anatomical landmarks for subclavian or femoral vein catheterization. Cochrane Database Syst Rev. 2015;1:CD011447.Google Scholar
  10. 10.
    Hilty WM, Hudson PA, Levitt MA, Hall JB. Real-time ultrasound-guided femoral vein catheterization during cardiopulmonary resuscitation. Ann Emerg Med. 1997;29(3):331–6; discussion 337.CrossRefGoogle Scholar
  11. 11.
    Fragou M, Gravvanis A, Dimitriou V, Papalois A, Kouraklis G, Karabinis A, Saranteas T, Poularas J, Papanikolaou J, Davlouros P, et al. Real-time ultrasound-guided subclavian vein cannulation versus the landmark method in critical care patients: a prospective randomized study. Crit Care Med. 2011;39(7):1607–12.CrossRefGoogle Scholar
  12. 12.
    Milling TJ Jr, Rose J, Briggs WM, Birkhahn R, Gaeta TJ, Bove JJ, Melniker LA. Randomized, controlled clinical trial of point-of-care limited ultrasonography assistance of central venous cannulation: the Third Sonography Outcomes Assessment Program (SOAP-3) Trial. Crit Care Med. 2005;33(8):1764–9.CrossRefGoogle Scholar
  13. 13.
    American Society of Anesthesiologists Task Force on Central Venous A, Rupp SM, Apfelbaum JL, Blitt C, Caplan RA, Connis RT, Domino KB, Fleisher LA, Grant S, Mark JB, et al. Practice guidelines for central venous access: a report by the American Society of Anesthesiologists Task Force on Central Venous Access. Anesthesiology. 2012;116(3):539–73.CrossRefGoogle Scholar
  14. 14.
    Care ACSCoP. Revised statement on recommendations for use of real-time ultrasound guidance for placement of central venous catheters. Bull Am Coll Surg. 2011;96(2):36–7.Google Scholar
  15. 15.
    Frankel HL, Kirkpatrick AW, Elbarbary M, Blaivas M, Desai H, Evans D, Summerfield DT, Slonim A, Breitkreutz R, Price S, et al. Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients-part I: general ultrasonography. Crit Care Med. 2015;43(11):2479–502.CrossRefGoogle Scholar
  16. 16.
    Bailey PL, Glance LG, Eaton MP, Parshall B, McIntosh S. A survey of the use of ultrasound during central venous catheterization. Anesth Analg. 2007;104(3):491–7.CrossRefGoogle Scholar
  17. 17.
    Buchanan MS, Backlund B, Liao MM, Sun J, Cydulka RK, Smith-Coggins R, Kendall J. Use of ultrasound guidance for central venous catheter placement: survey from the American Board of Emergency Medicine Longitudinal Study of Emergency Physicians. Acad Emerg Med. 2014;21(4):416–21.CrossRefGoogle Scholar
  18. 18.
    O’Grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, Lipsett PA, Masur H, Mermel LA, Pearson ML, et al. Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control. 2011;39(4 Suppl 1):S1–34.CrossRefGoogle Scholar
  19. 19.
    Bowdle A. Vascular complications of central venous catheter placement: evidence-based methods for prevention and treatment. J Cardiothorac Vasc Anesth. 2014;28(2):358–68.CrossRefGoogle Scholar
  20. 20.
    Hind D, Calvert N, McWilliams R, Davidson A, Paisley S, Beverley C, Thomas S. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ. 2003;327(7411):361.CrossRefGoogle Scholar
  21. 21.
    Augoustides JG, Horak J, Ochroch AE, Vernick WJ, Gambone AJ, Weiner J, Pinchasik D, Kowalchuk D, Savino JS, Jobes DR. A randomized controlled clinical trial of real-time needle-guided ultrasound for internal jugular venous cannulation in a large university anesthesia department. J Cardiothorac Vasc Anesth. 2005;19(3):310–5.CrossRefGoogle Scholar
  22. 22.
    Stone MB, Hern HG. Inadvertent carotid artery cannulation during ultrasound guided central venous catheterization. Ann Emerg Med. 2007;49(5):720.CrossRefGoogle Scholar
  23. 23.
    Adachi YU, Sato S. Four cases of inadvertent arterial cannulation despite of ultrasound guidance. Am J Emerg Med. 2010;28(4):533.CrossRefGoogle Scholar
  24. 24.
    Moon CH, Blehar D, Shear MA, Uyehara P, Gaspari RJ, Arnold J, Cukor J. Incidence of posterior vessel wall puncture during ultrasound-guided vessel cannulation in a simulated model. Acad Emerg Med. 2010;17(10):1138–41.CrossRefGoogle Scholar
  25. 25.
    Blaivas M, Adhikari S. An unseen danger: frequency of posterior vessel wall penetration by needles during attempts to place internal jugular vein central catheters using ultrasound guidance. Crit Care Med. 2009;37(8):2345–9. quiz 2359.CrossRefGoogle Scholar
  26. 26.
    Vogel JA, Haukoos JS, Erickson CL, Liao MM, Theoret J, Sanz GE, Kendall J. Is long-axis view superior to short-axis view in ultrasound-guided central venous catheterization? Crit Care Med. 2015;43(4):832–9.CrossRefGoogle Scholar
  27. 27.
    Dilisio R, Mittnacht AJ. The “medial-oblique” approach to ultrasound-guided central venous cannulation--maximize the view, minimize the risk. J Cardiothorac Vasc Anesth. 2012;26(6):982–4.CrossRefGoogle Scholar
  28. 28.
    Arellano R, Nurmohamed A, Rumman A, Day AG, Milne B, Phelan R, Tanzola R. The utility of transthoracic echocardiography to confirm central line placement: an observational study. Can J Anaesth. 2014;61(4):340–6.CrossRefGoogle Scholar
  29. 29.
    Chittoodan S, Breen D, O'Donnell BD, Iohom G. Long versus short axis ultrasound guided approach for internal jugular vein cannulation: a prospective randomised controlled trial. Med Ultrason. 2011;13(1):21–5.PubMedGoogle Scholar
  30. 30.
    Parienti JJ, Mongardon N, Megarbane B, Mira JP, Kalfon P, Gros A, Marque S, Thuong M, Pottier V, Ramakers M, et al. Intravascular complications of central venous catheterization by insertion site. N Engl J Med. 2015;373(13):1220–9.CrossRefGoogle Scholar
  31. 31.
    Vezzani A, Manca T, Brusasco C, Santori G, Cantadori L, Ramelli A, Gonzi G, Nicolini F, Gherli T, Corradi F. A randomized clinical trial of ultrasound-guided infra-clavicular cannulation of the subclavian vein in cardiac surgical patients: short-axis versus long-axis approach. Intensive Care Med. 2017;43:1594.CrossRefGoogle Scholar
  32. 32.
    Patrick SP, Tijunelis MA, Johnson S, Herbert ME. Supraclavicular subclavian vein catheterization: the forgotten central line. West J Emerg Med. 2009;10(2):110–4.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kocum A, Sener M, Caliskan E, Bozdogan N, Atalay H, Aribogan A. An alternative central venous route for cardiac surgery: supraclavicular subclavian vein catheterization. J Cardiothorac Vasc Anesth. 2011;25(6):1018–23.CrossRefGoogle Scholar
  34. 34.
    Brahos GJ. Central venous catheterization via the supraclavicular approach. J Trauma. 1977;17(11):872–7.CrossRefGoogle Scholar
  35. 35.
    Mallin M, Louis H, Madsen T. A novel technique for ultrasound-guided supraclavicular subclavian cannulation. Am J Emerg Med. 2010;28(8):966–9.CrossRefGoogle Scholar
  36. 36.
    Takechi K, Tubota S, Nagaro T. Ultrasound-guided in-plane supraclavicular approach for central venous catheterisation in patients with underlying bleeding disorders. Anaesth Intensive Care. 2011;39(6):1156–8.PubMedGoogle Scholar
  37. 37.
    Byon HJ, Lee GW, Lee JH, Park YH, Kim HS, Kim CS, Kim JT. Comparison between ultrasound-guided supraclavicular and infraclavicular approaches for subclavian venous catheterization in children--a randomized trial. Br J Anaesth. 2013;111(5):788–92.CrossRefGoogle Scholar
  38. 38.
    Saini V, Samra T. Ultrasound guided supraclavicular subclavian cannulation: a novel technique using “hockey stick” probe. J Emerg Trauma Shock. 2015;8(1):72–3.CrossRefGoogle Scholar
  39. 39.
    Thakur A, Kaur K, Lamba A, Taxak S, Dureja J, Singhal S, Bhardwaj M. Comparative evaluation of subclavian vein catheterisation using supraclavicular versus infraclavicular approach. Indian J Anaesth. 2014;58(2):160–4.CrossRefGoogle Scholar
  40. 40.
    Shiloh AL, Savel RH, Paulin LM, Eisen LA. Ultrasound-guided catheterization of the radial artery: a systematic review and meta-analysis of randomized controlled trials. Chest. 2011;139(3):524–9.CrossRefGoogle Scholar
  41. 41.
    Tada T, Amagasa S, Horikawa H. Usefulness of ultrasonic two-way Doppler flow detector in percutaneous arterial puncture in patients with hemorrhagic shock. J Anesth. 2003;17(1):70–1.CrossRefGoogle Scholar
  42. 42.
    Shiver S, Blaivas M, Lyon M. A prospective comparison of ultrasound-guided and blindly placed radial arterial catheters. Acad Emerg Med. 2006;13(12):1275–9.CrossRefGoogle Scholar
  43. 43.
    Sandhu NS, Patel B. Use of ultrasonography as a rescue technique for failed radial artery cannulation. J Clin Anesth. 2006;18(2):138–41.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • James P. Lee
    • 1
  • Joshua M. Zimmerman
    • 2
  • Natalie A. Silverton
    • 3
    Email author
  1. 1.Department of AnesthesiologyUniversity of Utah School of MedicineSalt Lake CityUSA
  2. 2.University of Utah School of MedicineSalt Lake CityUSA
  3. 3.Department of AnesthesiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations