Advertisement

Anesthesia for Open Pulmonary Resection: A Systems Approach

  • E. Andrew Ochroch
  • Gavin Michael Wright
  • Bernhard J. C. J. Riedel
Chapter

Abstract

Perioperative morbidity and mortality are common following lung resection, with most deaths (>75%) attributed to major adverse pulmonary events (MAPE; including pneumonia, acute lung injury [ALI], and acute respiratory distress syndrome [ARDS]). Perioperative risk can be managed by dividing risk into two broad categories: iatrogenic risk and patient-attributed risk. Clinical care pathways manage iatrogenic risk, while perioperative strategies that allow identification and optimal management of high-risk patients manage patient-attributed risk. These factors will improve outcomes and reduce hospital costs. Patient safety and the delivery of quality care, with emphasis on systems improvement, have emerged as central tasks for healthcare providers. In fact, benchmarking of data will increasingly allow patients to identify institutions that deliver on the value proposition – providing medical care that measures up in safety and quality and yet is delivered at significantly lower costs.

Keywords

Morbidity Mortality Lung resection Tidal volumes Injury Patients Risk 

Supplementary material

References

  1. 1.
    Dulu A, et al. Prevalence and mortality of acute lung injury and ARDS after lung resection. Chest J. 2006;130:73–8.CrossRefGoogle Scholar
  2. 2.
    Tang SS, et al. The mortality from acute respiratory distress syndrome after pulmonary resection is reducing: a 10-year single institutional experience. Eur J Cardiothorac Surg. 2008;34:898–902.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kopec SE, Irwin RS, Umali-Torres CB, Balikian JP, Conlan AA. The postpneumonectomy state. Chest J. 1998;114:1158–84.CrossRefGoogle Scholar
  4. 4.
    Kutlu CA, Williams EA, Evans TW, Pastorino U, Goldstraw P. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg. 2000;69:376–80.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Vaporciyan AA, et al. Incidence of major pulmonary morbidity after pneumonectomy: association with timing of smoking cessation. Ann Thorac Surg. 2002;73:420–6.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Kozower BD, et al. STS database risk models: predictors of mortality and major morbidity for lung cancer resection. Ann Thorac Surg. 2010;90:875–83.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lighter DE. Advanced performance improvement in healthcare. Sudbury: Jones and Bartlett Publishers; 2010. p. 1–16.Google Scholar
  8. 8.
    Kohn LT, Corrigan JM, Donaldson MS. To err is human: building a safer health system. Washington, DC: National Academies Press; 2000.Google Scholar
  9. 9.
    Richardson WC, et al. Crossing the Quality Chasm: A New Health System for the 21st Century. Washington, DC: Institute of Medicine, National Academy Press; 2001.Google Scholar
  10. 10.
    Starmer AJ, et al. Changes in medical errors after implementation of a handoff program. N Engl J Med. 2014;371:1803–12.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Vincent C, Moorthy K, Sarker SK, Chang A, Darzi AW. Systems approaches to surgical quality and safety: from concept to measurement. Ann Surg. 2004;239:475–82. 00000658-200404000-00007 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Dimick JB, Pronovost PJ, Cowan JA, Lipsett PA. Surgical volume and quality of care for esophageal resection: do high-volume hospitals have fewer complications? Ann Thorac Surg. 2003;75:337–41.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Chowdhury MM, Dagash H, Pierro A. A systematic review of the impact of volume of surgery and specialization on patient outcome. Br J Surg. 2007;94:145–61.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Dimick JB, Cowan JA Jr, Ailawadi G, Wainess RM, Upchurch GR Jr. National variation in operative mortality rates for esophageal resection and the need for quality improvement. Arch Surg. 2003;138:1305–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Dimick JB, Cowan JA Jr, Upchurch GR Jr, Colletti LM. Hospital volume and surgical outcomes for elderly patients with colorectal cancer in the United States. J Surg Res. 2003;114:50–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Verhoef C, van de Weyer R, Schaapveld M, Bastiaannet E, Plukker JTM. Better survival in patients with esophageal cancer after surgical treatment in university hospitals: a plea for performance by surgical oncologists. Ann Surg Oncol. 2007;14:1678–87.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kozower BD, Stukenborg GJ. The relationship between hospital lung cancer resection volume and patient mortality risk. Ann Surg. 2011;254:1032–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Wright CD, Kucharczuk JC, O’brien SM, Grab JD, Allen MS. Predictors of major morbidity and mortality after esophagectomy for esophageal cancer: a Society of Thoracic Surgeons General Thoracic Surgery Database risk adjustment model. J Thorac Cardiovasc Surg. 2009;137:587–96.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Zehr KJ, Dawson PB, Yang SC, Heitmiller RF. Standardized clinical care pathways for major thoracic cases reduce hospital costs. Ann Thorac Surg. 1998;66:914–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wright CD, et al. Pulmonary lobectomy patient care pathway: a model to control cost and maintain quality. Ann Thorac Surg. 1997;64:299–302.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Khuri SF. Quality, advocacy, healthcare policy, and the surgeon. Ann Thorac Surg. 2002;74:641–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Khuri SF, Daley J, Henderson WG. The comparative assessment and improvement of quality of surgical care in the Department of Veterans Affairs. Arch Surg. 2002;137:20–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Brunelli A, Kim AW, Berger KI, Addrizzo-Harris DJ. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: diagnosis and management of lung cancer: American College of Chest Physicians evidence-based clinical practice guidelines. Chest J. 2013;143:e166S–90S.CrossRefGoogle Scholar
  24. 24.
    Ries AL, et al. The effects of pulmonary rehabilitation in the national emphysema treatment trial. Chest. 2005;128:3799–809.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ries AL. Pulmonary rehabilitation and COPD. Respir Med. 2005;26:133–41.CrossRefGoogle Scholar
  26. 26.
    Mason DP, et al. Impact of smoking cessation before resection of lung cancer: a Society of Thoracic Surgeons General Thoracic Surgery Database study. Ann Thorac Surg. 2009;88:362–71.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ochroch EA, et al. Long-term pain and activity during recovery from major thoracotomy using thoracic epidural analgesia. Anesthesiology. 2002;97:1234–44.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Devereaux P, et al. POISE (PeriOperative ISchemic Evaluation) Investigators. Characteristics and short-term prognosis of perioperative myocardial infarction in patients undergoing noncardiac surgery: a cohort study. Ann Intern Med. 2011;154:523–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Nowbar AN, Cole GD, Shun-Shin MJ, Finegold JA, Francis DP. International RCT-based guidelines for use of preoperative stress testing and perioperative beta-blockers and statins in non-cardiac surgery. Int J Cardiol. 2014;172:138–43.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Garcia S, et al. Usefulness of revascularization of patients with multivessel coronary artery disease before elective vascular surgery for abdominal aortic and peripheral occlusive disease. Am J Cardiol. 2008;102:809–13.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Garcia S, McFalls EO. CON: preoperative coronary revascularization in high-risk patients undergoing vascular surgery. Anesth Analg. 2008;106:764–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    McFalls EO, et al. Predictors and outcomes of a perioperative myocardial infarction following elective vascular surgery in patients with documented coronary artery disease: results of the CARP trial. Eur Heart J. 2008;29:394–401.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Beattie WS, et al. Acute surgical anemia influences the cardioprotective effects of beta-blockade: a single-center, propensity-matched cohort study. Anesthesiology. 2010;112:25–33.  https://doi.org/10.1097/ALN.0b013e3181c5dd81. 00000542-201001000-00013 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hindler K, et al. Improved postoperative outcomes associated with preoperative statin therapy. Anesthesiology. 2006;105:1260–72; quiz 1289–90, 00000542-200612000-00027 [pii].PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Schouten O, et al. Fluvastatin and perioperative events in patients undergoing vascular surgery. N Engl J Med. 2009;361:980–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Amar D, et al. Statin use is associated with a reduction in atrial fibrillation after noncardiac thoracic surgery independent of C-reactive protein. Chest. 2005;128:3421–7. 128/5/3421 [pii].  https://doi.org/10.1378/chest.128.5.3421.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Amar D. Beta-adrenergic blocker withdrawal confounds the benefits of epidural analgesia with sympathectomy on supraventricular arrhythmias after cardiac surgery. Anesth Analg. 2002;95:1119, author reply 1119.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Schouten O, et al. Effect of statin withdrawal on frequency of cardiac events after vascular surgery. Am J Cardiol. 2007;100:316–20. S0002-9149(07)00718-7 [pii].  https://doi.org/10.1016/j.amjcard.2007.02.093.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rebound risk: aspirin and statin withdrawal. Consum Rep. 2005;70:48.Google Scholar
  40. 40.
    Collet JP, Montalescot G. Optimizing long-term dual aspirin/clopidogrel therapy in acute coronary syndromes: when does the risk outweigh the benefit? Int J Cardiol. 2009;133:8–17. S0167-5273(09)00013-8 [pii].  https://doi.org/10.1016/j.ijcard.2008.12.202.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ding X, et al. A comparison of the analgesia efficacy and side effects of paravertebral compared with epidural blockade for thoracotomy: an updated meta-analysis. PLoS One. 2014;9:e96233.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Samain E, et al. [Monitoring expired oxygen fraction in preoxygenation of patients with chronic obstructive pulmonary disease]. Ann Fr Anesth Reanim. 2002;21:14–9.Google Scholar
  43. 43.
    Servin FS, Billard V. Remifentanil and other opioids. Handb Exp Pharmacol. 2008;(182):283–311.Google Scholar
  44. 44.
    Failor E, Bowdle A, Jelacic S, Togashi K. High-fidelity simulation of lung isolation with double-lumen endotracheal tubes and bronchial blockers in anesthesiology resident training. J Cardiothorac Vasc Anesth. 2014;28:865–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Slinger P. Update on anesthetic management for pneumonectomy. Curr Opin Anaesthesiol. 2009;22:31–7.CrossRefGoogle Scholar
  46. 46.
    Bigatello LM, Allain R, Gaissert HA. Acute lung injury after pulmonary resection. Minerva Anestesiol. 2004;70:159–66.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Michelet P, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105:911–9. 00000542-200611000-00011 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Choi G, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology. 2006;105:689–95. 00000542-200610000-00013 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Determann RM, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care. 2010;14:R1. cc8230 [pii].  https://doi.org/10.1186/cc8230.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    De Conno E, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110:1316–26.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Brassard C, Lohser J, Donati F, Bussieres J. Step-by-step clinical management of one-lung ventilation: continuing professional development. Can J Anesth. 2014;61:1003–21.CrossRefGoogle Scholar
  52. 52.
    Swenson ER. Hypoxic pulmonary vasoconstriction. High Alt Med Biol. 2013;14:101–10.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Ward J, McMurtry I. Mechanisms of hypoxic pulmonary vasoconstriction and theirroles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol. 2009;9:1–10.CrossRefGoogle Scholar
  54. 54.
    Dunham-Snary KJ, et al. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest. 2017;151:181–92.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Aaronson PI, et al. Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol. 2006;570:53–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Rhodes CJ, Davidson A, Gibbs JSR, Wharton J, Wilkins MR. Therapeutic targets in pulmonary arterial hypertension. Pharmacol Ther. 2009;121:69–88.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Weigand L, Sylvester JT, Shimoda LA. Mechanisms of endothelin-1-induced contraction in pulmonary arteries from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol. 2006;290:L284–90.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Jernigan NL, Walker BR, Resta TC. Chronic hypoxia augments protein kinase G-mediated Ca2+ desensitization in pulmonary vascular smooth muscle through inhibition of RhoA/Rho kinase signaling. Am J Physiol Lung Cell Mol Physiol. 2004;287:L1220–9.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Yamamoto Y, et al. Role of airway nitric oxide on the regulation of pulmonary circulation by carbon dioxide. J Appl Physiol. 2001;91:1121–30.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nagendran J, Stewart K, Hoskinson M, Archer SL. An anesthesiologist’s guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis. Curr Opin Anaesthesiol. 2006;19:34–43.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Abe K, Shimizu T, Takashina M, Shiozaki H, Yoshiya I. The effects of propofol, isoflurane, and sevoflurane on oxygenation and shunt fraction during one-lung ventilation. Anesth Analg. 1998;87:1164–9.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Pruszkowski O, et al. Effects of propofol vs sevoflurane on arterial oxygenation during one-lung ventilation. Br J Anaesth. 2007;98:539–44.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Popping DM, Elia N, Marret E, Remy C, Tramer MR. Protective effects of epidural analgesia on pulmonary complications after abdominal and thoracic surgery: a meta-analysis. Arch Surg. 2008;143:990–9; discussion 1000.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Groeben H. Epidural anesthesia and pulmonary function. J Anesth. 2006;20:290–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Moraca RJ, Sheldon DG, Thirlby RC. The role of epidural anesthesia and analgesia in surgical practice. Ann Surg. 2003;238:663–73.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kehlet H, Wilmore DW. Multimodal strategies to improve surgical outcome. Am J Surg. 2002;183:630–41.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Grass JA. The role of epidural anesthesia and analgesia in postoperative outcome. Anesthesiol Clin North Am. 2000;18:407–28.CrossRefGoogle Scholar
  68. 68.
    De Cosmo G, Aceto P, Gualtieri E, Congedo E. Analgesia in thoracic surgery: review. Minerva Anestesiol. 2009;75:393–400.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Guay J. The benefits of adding epidural analgesia to general anesthesia: a metaanalysis. J Anesth. 2006;20:335–40.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Holte K, Kehlet H. Effect of postoperative epidural analgesia on surgical outcome. Minerva Anestesiol. 2002;68:157–61.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Lewis KS, Whipple JK, Michael KA, Quebbeman EJ. Effect of analgesic treatment on the physiological consequences of acute pain. Am J Hosp Pharm. 1994;51:1539–54.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Kehlet H. The stress response to surgery: release mechanisms and the modifying effect of pain relief. Acta Chir Scand Suppl. 1989;550:22–8.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Hahnenkamp K, Herroeder S, Hollmann MW. Regional anaesthesia, local anaesthetics and the surgical stress response. Best Pract Res Clin Anaesthesiol. 2004;18:509–27.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Yeager MP, Glass DD, Neff RK, Brinck-Johnsen T. Epidural anesthesia and analgesia in high-risk surgical patients. Anesthesiology. 1987;66:729–36.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Clemente A, Carli F. The physiological effects of thoracic epidural anesthesia and analgesia on the cardiovascular, respiratory and gastrointestinal systems. Minerva Anestesiol. 2008;74:549–63.PubMedGoogle Scholar
  76. 76.
    Bromage P. Spirometery in assessment of analgesia after abdominal surgery. Br Med J. 1955;2:589–93.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Spray SB, Zuidema GD, Cameron JL. Aspiration pneumonia; incidence of aspiration with endotracheal tubes. Am J Surg. 1976;131:701–3.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Sackner MA, Hirsch J, Epstein S. Effect of cuffed endotracheal tubes on tracheal mucous velocity. Chest. 1975;68:774–7.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Chaney MA. Intrathecal and epidural anesthesia and analgesia for cardiac surgery. Anesth Analg. 2006;102:45–64.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Riedel BJ, Wright IG. Epidural anesthesia in coronary artery bypass grafting surgery. Curr Opin Cardiol. 1997;12:515–21.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Gottschalk A, Cohen SP, Yang S, Ochroch EA. Preventing and treating pain after thoracic surgery. Anesthesiology. 2006;104:594–600.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Grape S, Tramer MR. Do we need preemptive analgesia for the treatment of postoperative pain? Best Pract Res Clin Anaesthesiol. 2007;21:51–63.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Pogatzki-Zahn EM, Zahn PK. From preemptive to preventive analgesia. Curr Opin Anaesthesiol. 2006;19:551–5.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Ochroch EA, Gottschalk A. Impact of acute pain and its management for thoracic surgical patients. Thorac Surg Clin. 2005;15:105–21.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    George MJ. The site of action of epidurally administered opioids and its relevance to postoperative pain management. Anaesthesia. 2006;61:659–64.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Davies RG, Myles PS, Graham JM. A comparison of the analgesic efficacy and side-effects of paravertebral vs epidural blockade for thoracotomy – a systematic review and meta-analysis of randomized trials. [erratum appears in Br J Anaesth. 2007;99(5):768]. British Journal of Anaesthesia. 2006;96:418–26.Google Scholar
  87. 87.
    Joshi GP, et al. A systematic review of randomized trials evaluating regional techniques for postthoracotomy analgesia. Anesth Analg. 2008;107:1026–40.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Sugasawa Y, et al. Effects of sevoflurane and propofol on pulmonary inflammatory responses during lung resection. J Anesth. 2012;26:62–9.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Chong PC, et al. Substantial variation of both opinions and practice regarding perioperative fluid resuscitation. Can J Surg. 2009;52:207–14.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Turnage WS, Lunn JJ. Postpneumonectomy pulmonary edema. A retrospective analysis of associated variables. Chest. 1993;103:1646–50.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Jackson TA, et al. Case 5-2007 postoperative complications after pneumonectomy: clinical conference. J Cardiothorac Vasc Anesth. 2007;21:743–51.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Jordan S, Mitchell JA, Quinlan GJ, Goldstraw P, Evans TW. The pathogenesis of lung injury following pulmonary resection. Eur Respir J. 2000;15:790–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Polubinska A, Breborowicz A, Staniszewski R, Oreopoulos DG. Normal saline induces oxidative stress in peritoneal mesothelial cells. J Pediatr Surg. 2008;43:1821–6.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Westphal M, et al. Hydroxyethyl starches: different products--different effects. Anesthesiology. 2009;111:187–202.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Boldt J. Modern rapidly degradable hydroxyethyl starches: current concepts. Anesth Analg. 2009;108:1574–82.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Boldt J. Saline versus balanced hydroxyethyl starch: does it matter? Curr Opin Anaesthesiol. 2008;21:679–83.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Ueda H, Iwasaki A, Kusano T, Shirakusa T. Thoracotomy in patients with liver cirrhosis. Scand J Thorac Cardiovasc Surg. 1994;28:37–41.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Ceyhan B, Celikel T. Serum-effusion albumin gradient in separation of transudative and exudative pleural effusions.[comment]. Chest. 1994;105:974–5.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Zarychanski R, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309:678–88.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Taylor C, et al. Hydroxyethyl starch versus saline for resuscitation of patients in intensive care: long-term outcomes and cost-effectiveness analysis of a cohort from CHEST. Lancet Respir Med. 2016;4:818–25.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Ishikawa S, Griesdale DE, Lohser J. Acute kidney injury after lung resection surgery: incidence and perioperative risk factors. Anesth Analg. 2012;114:1256–62.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Older P, Hall A, Hader R. Cardiopulmonary exercise testing as a screening test for perioperative management of major surgery in the elderly. Chest. 1999;116:355–62.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Jordan S, Evans TW. Predicting the need for intensive care following lung resection. Thorac Surg Clin. 2008;18:61–9.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.CrossRefGoogle Scholar
  105. 105.
    Travis WD, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–60.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Maggiore C, et al. Histological classification of lung cancer. Rays. 2004;29:353–5.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Lortet-Tieulent J, et al. International trends in lung cancer incidence by histological subtype: adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer. 2014;84:13–22.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Houston KA, Henley SJ, Li J, White MC, Richards TB. Patterns in lung cancer incidence rates and trends by histologic type in the United States, 2004–2009. Lung Cancer. 2014;86:22–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Beckles MA, Spiro SG, Colice GL, Rudd RM. Initial evaluation of the patient with lung cancer: symptoms, signs, laboratory tests, and paraneoplastic syndromes. Chest. 2003;123:97S–104S.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Amer KM, Ibrahim NB, Forrester-Wood CP, Saad RA, Scanlon M. Lung carcinoid related Cushing’s syndrome: report of three cases and review of the literature. Postgrad Med J. 2001;77:464–7.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Radulescu D, Pripon S, Bunea D, Ciuleanu TE, Radulescu LI. Endocrine paraneoplastic syndromes in small cell lung carcinoma. Two case reports. J BUON. 2007;12:411–4.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Gerber RB, Mazzone P, Arroliga AC. Paraneoplastic syndromes associated with bronchogenic carcinoma. Clin Chest Med. 2002;23:257–64.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Pourmand R. Lambert-eaton myasthenic syndrome. Front Neurol Neurosci. 2009;26:120–5.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Darnell RB, Posner JB. Paraneoplastic syndromes affecting the nervous system. Semin Oncol. 2006;33:270–98.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    D’addario G, et al. Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published literature. J Clin Oncol. 2005;23:2926–36.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Endo C, et al. Surgical treatment of stage I non-small cell lung carcinoma. Ann Thorac Cardiovasc Surg. 2003;9:283–9.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Goldstraw P, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2007;2:706–14.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Tsao M-S, et al. Subtype classification of lung adenocarcinoma predicts benefit from adjuvant chemotherapy in patients undergoing complete resection. J Clin Oncol. 2015;33:3439–46.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Der SD, et al. Validation of a histology-independent prognostic gene signature for early-stage, non–small-cell lung cancer including stage IA patients. J Thorac Oncol. 2014;9:59–64.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Fukuoka M, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non–small-cell lung cancer in Asia (IPASS). J Clin Oncol. 2011;29:2866–74.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Solomon BJ, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371:2167–77.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Chambers SK, et al. A systematic review of the impact of stigma and nihilism on lung cancer outcomes. BMC Cancer. 2012;12:184.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Gottschalk A, Sharma S, Ford J, Durieux ME, Tiouririne M. The role of the perioperative period in recurrence after cancer surgery. Anesth Analg. 2010;110:1636–43.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Myles PS, et al. Perioperative epidural analgesia for major abdominal surgery for cancer and recurrence-free survival: randomised trial. BMJ. 2011;342:d1491.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Nielsen SF, Nordestgaard BG, Bojesen SE. Statin use and reduced cancer-related mortality. N Engl J Med. 2012;367:1792–802.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Singh S, Singh AG, Singh PP, Murad MH, Iyer PG. Statins are associated with reduced risk of esophageal cancer, particularly in patients with Barrett’s esophagus: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:620–9.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Pelaia G, et al. Effects of statins and farnesyl transferase inhibitors on ERK phosphorylation, apoptosis and cell viability in non-small lung cancer cells. Cell Prolif. 2012;45:557–65.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Khurana V, Bejjanki HR, Caldito G, Owens MW. Statins reduce the risk of lung cancer in humans: a large case-control study of US veterans. Chest. 2007;131:1282–8. 131/5/1282 [pii].  https://doi.org/10.1378/chest.06-0931.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Rothwell PM, et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Norman PH, et al. A possible association between aprotinin and improved survival after radical surgery for mesothelioma. Cancer. 2009;115:833–41.  https://doi.org/10.1002/cncr.24108.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Norman P. Rofecoxib provides significant improvement in survival following lung resection for cancer. Anesthesiology. 2008;109:A1586.Google Scholar
  132. 132.
    Landreneau RJ, et al. Recurrence and survival outcomes after anatomic segmentectomy versus lobectomy for clinical stage I non–small-cell lung cancer: a propensity-matched analysis. J Clin Oncol. 2014;32:2449–55.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Allen MS, et al. Morbidity and mortality of major pulmonary resections in patients with early-stage lung cancer: initial results of the randomized, prospective ACOSOG Z0030 trial. Ann Thorac Surg. 2006;81:1013–9; discussion 1019–20, S0003-4975(05)01175-6 [pii].  https://doi.org/10.1016/j.athoracsur.2005.06.066.CrossRefGoogle Scholar
  134. 134.
    Falcoz P-E, et al. Video-assisted thoracoscopic surgery versus open lobectomy for primary non-small-cell lung cancer: a propensity-matched analysis of outcome from the European Society of Thoracic Surgeon database. Eur J Cardiothorac Surg. 2016;49:602–9.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Bendixen M, Jørgensen OD, Kronborg C, Andersen C, Licht PB. Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: a randomised controlled trial. Lancet Oncol. 2016;17:836–44.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Kent M, et al. Open, video-assisted thoracic surgery, and robotic lobectomy: review of a national database. Ann. Thorac. Surg. 2014;97:236–44.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    O’doherty A, West M, Jack S, Grocott M. Preoperative aerobic exercise training in elective intra-cavity surgery: a systematic review. Br J Anaesth. 2013;110:679–89.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Kozian A, Schilling T. Protective ventilatory approaches to one-lung ventilation: more than reduction of tidal volume. Curr Anesthesiology Rep. 2014;4:150–9.CrossRefGoogle Scholar
  139. 139.
    Licker M, Fauconnet P, Villiger Y, Tschopp JM. Acute lung injury and outcomes after thoracic surgery. Curr Opin Anaesthesiol. 2009;22:61–7.  https://doi.org/10.1097/ACO.0b013e32831b466c. 00001503-200902000-00012 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Chau EHL, Slinger P. Seminars in cardiothoracic and vascular anesthesia. Los Angeles: SAGE Publications Sage CA. p. 36–44.Google Scholar
  141. 141.
    Madani A, et al. An enhanced recovery pathway reduces duration of stay and complications after open pulmonary lobectomy. Surgery. 2015;158:899–910.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Ludwig C, Stoelben E, Olschewski M, Hasse J. Comparison of morbidity, 30-day mortality, and long-term survival after pneumonectomy and sleeve lobectomy for non–small cell lung carcinoma. Ann Thorac Surg. 2005;79:968–73.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Finks JF, Osborne NH, Birkmeyer JD. Trends in hospital volume and operative mortality for high-risk surgery. N Engl J Med. 2011;364:2128–37.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Zeldin R, Normandin D, Landtwing D, Peters R. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87:359–65.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Foroulis CN, et al. Study on the late effect of pneumonectomy on right heart pressures using Doppler echocardiography. Eur J Cardiothorac Surg. 2004;26:508–14.CrossRefGoogle Scholar
  146. 146.
    Fernández-Pérez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105:14–8.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Schilling T, et al. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg. 2005;101:957–65.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Cerfolio RJ, et al. Lung resection in patients with compromised pulmonary function. Ann Thorac Surg. 1996;62:348–51.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    McGlade DP, Slinger PD. The elective combined use of a double lumen tube and endobronchial blocker to provide selective lobar isolation for lung resection following contralateral lobectomy. Anesthesiology. 2003;99:1021–2.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • E. Andrew Ochroch
    • 1
  • Gavin Michael Wright
    • 2
    • 3
  • Bernhard J. C. J. Riedel
    • 4
    • 5
  1. 1.Department of Anesthesiology and Critical CareUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Cardiothoracic SurgeryRoyal Melbourne HospitalParkvilleAustralia
  3. 3.Department of SurgeryUniversity of MelbourneMelbourneAustralia
  4. 4.Department of Anesthesiology, Perioperative and Pain MedicinePeter MacCallum Cancer CentreMelbourneAustralia
  5. 5.University of MelbourneMelbourneAustralia

Personalised recommendations