Advertisement

Intraoperative Ventilation Strategies for Thoracic Surgery

  • Jennifer A. MacphersonEmail author
Chapter

Abstract

Ventilatory strategies for one-lung ventilation (OLV) should take into account preventing intraoperative hypoxemia, intraoperative alveolar stress, and postoperative ventilator-induced lung injury (VILI). A lung-protective strategy utilizing low tidal volumes (< 6 mL/kg of predicted body weight) and limited plateau inflation pressures (<25 cm H2O) is clearly indicated for patients at high risk for developing postoperative acute respiratory distress syndrome (ARDS) or acute lung injury (ALI). Based on this recent data, the use of low tidal volumes and inflation pressures during OLV is appropriate as long as high breathing frequencies are not required and permissive hypercapnia is not contraindicated. With appropriate use of pressure and tidal volume alarms, either pressure- or volume-controlled ventilation may be used. Intrinsic positive end-expiratory pressure (PEEP) is common with OLV (utilizing a double-lumen endotracheal tube), and caution is warranted when high respiratory rates (short exhalation times) are utilized.

The addition of external PEEP does not consistently improve oxygenation and has not been shown to reduce the incidence of VILI.

A lung-opening procedure (LOP) utilizing several breaths of high inspiratory and expiratory pressures may improve oxygenation, but the hemodynamic consequences of the maneuver must be considered. While no evidence-based specific recommendations can be made for OLV, the growing body of OLV research does help the anesthesiologist select the best strategy for an individual patient and surgery.

Keywords

ARDS Lung-protective strategy One-lung ventilation PEEP Pressure-controlled ventilation Thoracic surgery VILI Volume-controlled ventilation 

References

  1. 1.
    Lohser J, Slinger P. Lung injury after one-lung ventilation: A review of the pathophysiologic mechanisms affecting the ventilated and collapsed lung. Anesth Analg. 2015;121:302–18.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Slinger PD. Postpneumonectomy pulmonary edema: good news, bad news. Anesthesiology. 2006;105:2–5.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Zeldin RA, Normandin D, Landtwing D, Peters RM. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87:359–65.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Fernández-Pérez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105:14–8.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Gothard J. Lung injury after thoracic surgery and one-lung ventilation. Curr Opin Anaesthesiol. 2006;19:5–10.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Baudouin SV. Lung injury after thoracotomy. Br J Anaesth. 2003;91:132–42.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Williams EA, Evans TW, Goldstraw P. Acute lung injury following lung resection: is one lung anaesthesia to blame? Thorax. 1996;51:114–6.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Gao L, Barnes KC. Recent advances in genetic predisposition to clinical acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2009;296:L713–25.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Licker M, de Perrot M, Spiliopoulos A, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97:1558–65.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Jeon K, Yoon JW, Suh GY, et al. Risk factors for post-pneumonectomy acute lung injury/acute respiratory distress syndrome in primary lung cancer patients. Anaesth Intensive Care. 2009;37:14–9.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu Z, Liu X, Huang Y, Zhao J. Intraoperative mechanical ventilation strategies in patients undergoing one-lung ventilation: a meta-analysis. Springerplus. 2016;5:1251.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Gulder A, Kiss T, Serpa Neto T, Hemmes SN, Canet j SPM, Rocco PR, Schultz MJ, Pelosi P, Gama de Abreu M. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: A comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology. 2015;123(3):692–713.CrossRefGoogle Scholar
  13. 13.
    Blank RS, Colquhoun DA, Durieux ME, Kozower BD, McMurray TL, Bender SP, Naik BI. Management of one-lung ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124(6):1286–129.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Brassard CL, Lohser J, Donati F, Bussieres JS. Step by step clinical management of one-lung ventilation: continuing professional development. Can J Anaesth. 2014;61:1103–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Licker M, Diaper J, Villiger Y, et al. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care. 2009;13:R41.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lumb AB. Nunn’s applied respiratory physiology. 8th ed. Edinburgh, New York: Elsevier; 2017Google Scholar
  17. 17.
    Brodsky JB, Lemmens HJ. Left double-lumen tubes: clinical experience with 1,170 patients. J Cardiothorac Vasc Anesth. 2003;17:289–98.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Karzai W, Schwarzkopf K. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology. 2009;110:1402–11.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hedenstierna G, Tokics L, Strandberg A, Lundquist H, Brismar B. Correlation of gas exchange impairment to development of atelectasis during anaesthesia and muscle paralysis. Acta Anaesthesiol Scand. 1986;30:183–91.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Larsson A, Malmkvist G, Werner O. Variations in lung volume and compliance during pulmonary surgery. Br J Anaesth. 1987;59:585–91.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Katz JA, Laverne RG, Fairley HB, Thomas AN. Pulmonary oxygen exchange during endobronchial anesthesia: effect of tidal volume and PEEP. Anesthesiology. 1982;56:164–71.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Levin AI, Coetzee JF. Arterial oxygenation during one-lung anesthesia. Anesth Analg. 2005;100:12–4.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Levin AI, Coetzee JF, Coetzee A. Arterial oxygenation and one-lung anesthesia. Curr Opin Anaesthesiol. 2008;21:28–36.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Takala J. Hypoxemia due to increased venous admixture: influence of cardiac output on oxygenation. Intensive Care Med. 2007;33:908–11.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Nagendran J, Stewart K, Hoskinson M, Archer SL. An anesthesiologist’s guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis. Curr Opin Anaesthesiol. 2006;19:34–43.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Capan LM, Turndorf H, Patel C, Ramanathan S, Acinapura A, Chalon J. Optimization of arterial oxygenation during one-lung anesthesia. Anesth Analg. 1980;59:847–51.Google Scholar
  27. 27.
    Slinger PD, Kruger M, McRae K, Winton T. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology. 2001;95:1096–102.CrossRefGoogle Scholar
  28. 28.
    Maeda Y, Fujino Y, Uchiyama A, Matsuura N, Mashimo T, Nishimura M. Effects of peak inspiratory flow on development of ventilator-induced lung injury in rabbits. Anesthesiology. 2004;101:722–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Uhlig S. Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am J Physiol Lung Cell Mol Physiol. 2002;282:L892–6.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Prella M, Feihl F, Domenighetti G. Effects of short-term pressure-controlled ventilation on gas exchange, airway pressures, and gas distribution in patients with acute lung injury/ARDS: comparison with volume-controlled ventilation. Chest. 2002;122:1382–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Davis K Jr, Branson RD, Campbell RS, Porembka DT. Comparison of volume control and pressure control ventilation: is flow waveform the difference? J Trauma. 1996;41:808–14.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Campbell RS, Davis BR. Pressure-controlled versus volume-controlled ventilation: does it matter? Respir Care. 2002;47:416–24.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Cadi P, Guenoun T, Journois D, Chevallier JM, Diehl JL, Safran D. Pressure-controlled ventilation improves oxygenation during laparoscopic obesity surgery compared with volume-controlled ventilation. Br J Anaesth. 2008;100:709–16.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Balick-Weber CC, Nicolas P, Hedreville-Montout M, Blanchet P, Stéphan F. Respiratory and haemodynamic effects of volume-controlled vs. pressure-controlled ventilation during laparoscopy: a cross-over study with echocardiographic assessment. Br J Anaesth. 2007;99:429–35.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Heimberg C, Winterhalter M, Strüber M, Piepenbrock S, Bund M. Pressure-controlled versus volume-controlled one-lung ventilation for MIDCAB. Thorac Cardiovasc Surg. 2006;54:516–20.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Unzueta MC, Casas JI, Moral MV. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation for thoracic surgery. Anesth Analg. 2007;104:1029–33.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Choi YS, Shim JK, Na S, Hong SB, Hong YW, Oh YJ. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation in the prone position for robot-assisted esophagectomy. Surg Endosc. 2009;23:2286–91.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Tugrul M, Çamci E, Karadeniz H, Sentürk M, Pembeci K, Akpir K. Comparison of volume controlled with pressure controlled ventilation during one-lung anaesthesia. Br J Anaesth. 1997;79:306–10.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bardoczky GI, d’Hollander AA, Rocmans P, Estenne M, Yernault JC. Respiratory mechanics and gas exchange during one-lung ventilation for thoracic surgery: the effects of end-inspiratory pause in stable COPD patients. J Cardiothorac Vasc Anesth. 1998;12:137–41.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Malhotra A. Low-tidal-volume ventilation in the acute respiratory distress syndrome. N Engl J Med. 2007;357:1113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Petrucci N, Iacovelli W. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev. 2007;(2):CD003844.Google Scholar
  42. 42.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRefGoogle Scholar
  43. 43.
    Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med. 2009;151:566–76.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Tobin MJ. Advances in mechanical ventilation. N Engl J Med. 2001;344:1986–96.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Mols G, Priebe HJ, Guttmann J. Alveolar recruitment in acute lung injury. Br J Anaesth. 2006;96:156–66.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Morisaki H, Serita R, Innami Y, Kotake Y, Takeda J. Permissive hypercapnia during thoracic anaesthesia. Acta Anaesthesiol Scand. 1999;43:845–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Sticher J, Müller M, Scholz S, Schindler E, Hempelmann G. Controlled hypercapnia during one-lung ventilation in patients undergoing pulmonary resection. Acta Anaesthesiol Scand. 2001;45:842–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Broccard AFM. Respiratory acidosis and acute respiratory distress syndrome: time to trade in a bull market? Crit Care Med. 2006;34:229–31.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Vaneker M, Heunks LM, Joosten LA, et al. Mechanical ventilation induces a toll/interleukin-1 receptor domain-containing adapter-inducing interferon beta-dependent inflammatory response in healthy mice. Anesthesiology. 2009;111:836–43.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Curley GF, Kevin LG, Laffey JG. Mechanical ventilation: taking its toll on the lung. Anesthesiology. 2009;111:701–3.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Dos Santos CC, Slutsky AS. Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol. 2000;89:1645–55.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Hager DN, Krishnan JA, Hayden DL, Brower RG. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172:1241–5.53.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hemmes SN, Gamma de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anesthesia for open abdominal surgery (PROVHILO trial): a multicenter randomized controlled trial. Lancet. 2014;384:495–503.PubMedCrossRefGoogle Scholar
  54. 54.
    Ferrando C, Belda FJ. Personalized intraoperative positive end-expiratory pressure: a further step in protective ventilation. Minerva Anestesiol. 2018;84(2):147–9.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Predicted Body Weight Calculator. http://www.ardsnet.org/node/77460. Accessed 18 Dec 2009.
  56. 56.
    Tandon S, Batchelor A, Bullock R, et al. Peri-operative risk factors for acute lung injury after elective oesophagectomy. Br J Anaesth. 2001;86:633–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kutlu CA, Williams EA, Evans TW, Pastorino U, Goldstraw P. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg. 2000;69:376–80.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lytle FT, Brown DR. Appropriate ventilatory settings for thoracic surgery: intraoperative and postoperative. Semin Cardiothorac Vasc Anesth. 2008;12:97–108.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Slinger P. Pro: low tidal volume is indicated during one-lung ventilation. Anesth Analg. 2006;103:268–70.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Gal TJ. Con: low tidal volumes are indicated during one-lung ventilation. Anesth Analg. 2006;103:271–3.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Levin MA, McCormick PJ, Lin HM, Hosseinian L, Fischer GW. Low intraoperative tidal volume ventilation with minimal PEEP is associated with increased mortality. Br J Anaesth. 2014;113(1):97–108.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Duggan M, Kavanagh BP. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102:838–54.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Michelet P, D’Journo XB, Roch A, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105:911–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Schilling T, Kozian A, Huth C, et al. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg. 2005;101:957–65.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wrigge H, Uhlig U, Zinserling J, et al. The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg. 2004;98:775–81.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Shaw AD, Vaporciyan AA, Wu X, et al. Inflammatory gene polymorphisms influence risk of postoperative morbidity after lung resection. Ann Thorac Surg. 2005;79:1704–10.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Tekinbas C, Ulusoy H, Yulug E, et al. One-lung ventilation: for how long? J Thorac Cardiovasc Surg. 2007;134:405–10.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Misthos P, Katsaragakis S, Milingos N, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg. 2005;27:379–82.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Cheng YJ, Chan KC, Chien CT, Sun WZ, Lin CJ. Oxidative stress during 1-lung ventilation. J Thorac Cardiovasc Surg. 2006;132:513–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gajic O, Dara SI, Mendez JL, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–24.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Schultz MJ. Lung-protective mechanical ventilation with lower tidal volumes in patients not suffering from acute lung injury: a review of clinical studies. Med Sci Monit. 2008;14:RA22–6.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Bonetto C, Terragni P, Ranieri VM. Does high tidal volume generate ALI/ARDS in healthy lungs? Intensive Care Med. 2005;31:893–5.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Slinger PD, Hickey DR. The interaction between applied PEEP and auto-PEEP during one-lung ventilation. J Cardiothorac Vasc Anesth. 1998;12:133–6.CrossRefGoogle Scholar
  74. 74.
    Levy MM. PEEP in ARDS – how much is enough? N Engl J Med. 2004;351:389–91.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–36.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:637–45.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Mercat A, Richard JC, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:646–55.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Gattinoni L, Caironi P. Refining ventilatory treatment for acute lung injury and acute respiratory distress syndrome. JAMA. 2008;299:691–3.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ducros L, Moutafis M, Castelain MH, Liu N, Fischler M. Pulmonary air trapping during two-lung and one-lung ventilation. J Cardiothorac Vasc Anesth. 1999;13:35–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Yokota K, Toriumi T, Sari A, Endou S, Mihira M. Auto-positive end-expiratory pressure during one-lung ventilation using a double-lumen endobronchial tube. Anesth Analg. 1996;82:1007–10.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Bardoczky GI, Yernault JC, Engelman EE, Velghe CE, Cappello M, Hollander AA. Intrinsic positive end-expiratory pressure during one-lung ventilation for thoracic surgery. The influence of preoperative pulmonary function. Chest. 1996;110:180–4.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Blanch L, Bernabé F, Lucangelo U. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir Care. 2005;50:110–23.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Bardoczky GI, d’Hollander AA, Cappello M, Yernault JC. Interrupted expiratory flow on automatically constructed flow-volume curves may determine the presence of intrinsic positive end-expiratory pressure during one-lung ventilation. Anesth Analg. 1998;86:880–4.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Benumof JL. One-lung ventilation: which lung should be PEEPed? Anesthesiology. 1982;56:161–3.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Mascotto G, Bizzarri M, Messina M, et al. Prospective, randomized, controlled evaluation of the preventive effects of positive end-expiratory pressure on patient oxygenation during one-lung ventilation. Eur J Anaesthesiol. 2003;20:704–10.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Leong LM, Chatterjee S, Gao F. The effect of positive end expiratory pressure on the respiratory profile during one-lung ventilation for thoracotomy. Anaesthesia. 2007;62:23–6.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Cohen E, Eisenkraft JB. Positive end-expiratory pressure during one-lung ventilation improves oxygenation in patients with low arterial oxygen tensions. J Cardiothorac Vasc Anesth. 1996;10:578–82.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Valenza F, Ronzoni G, Perrone L, et al. Positive end-expiratory pressure applied to the dependent lung during one-lung ventilation improves oxygenation and respiratory mechanics in patients with high FEV1. Eur J Anaesthesiol. 2004;21:938–43.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Inomata S, Nishikawa T, Saito S, Kihara S. “Best” PEEP during one-lung ventilation. Br J Anaesth. 1997;78:754–6.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Lachmann B. Open up the lung and keep the lung open. Intensive Care Med. 1992;18:319–21.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Lapinsky SE, Mehta S. Bench-to-bedside review: recruitment and recruiting maneuvers. Crit Care. 2005;9:60–5.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Tusman G, Böhm SH, Sipmann FS, Maisch S. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98:1604–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Cinnella G, Grasso S, Natale C, et al. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol Scand. 2008;52:766–75.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Perioperative MedicineThe University of Rochester Medical CenterRochesterUSA

Personalised recommendations