Advertisement

Fluid Management in Thoracic Surgery

  • Rebecca Y. KlingerEmail author
Chapter

Abstract

Lung injury after thoracic surgery is a major source of postoperative morbidity and mortality. There appears to be a link between excessive perioperative intravenous fluid administration and increased risk for lung injury in thoracic surgical patients for all types of intrathoracic procedures. Thus, a rational approach to perioperative fluid management is crucial to mitigate the risk of postoperative pulmonary injury. While a “restrictive” fluid management approach has long been advocated, there is a paucity of data related to this approach in thoracic surgical patients specifically. Several concepts regarding fluid management can be adapted from the non-cardiothoracic surgery literature, but ultimately more research will be required to define the optimal approach to perioperative fluid management in thoracic surgery.

Keywords

Fluid Acute lung injury Acute respiratory distress syndrome Postpneumonectomy Glycocalyx Goal-directed 

References

  1. 1.
    Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth. 2002;89(4):622–32.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Chawla LS, Ince C, Chappell D, Gan TJ, Kellum JA, Mythen M, et al. Vascular content, tone, integrity, and haemodynamics for guiding fluid therapy: a conceptual approach. Br J Anaesth. 2014;113(5):748–55.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Brandstrup B, Tonnesen H, Beier-Holgersen R, Hjortso E, Ording H, Lindorff-Larsen K, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238(5):641–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet. 2002;359(9320):1812–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einav S, Matot I. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology. 2005;103(1):25–32.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Alam N, Park BJ, Wilton A, Seshan VE, Bains MS, Downey RJ, et al. Incidence and risk factors for lung injury after lung cancer resection. Ann Thorac Surg. 2007;84(4):1085–91. discussion 91PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33.Google Scholar
  8. 8.
    Licker M, de Perrot M, Spiliopoulos A, Robert J, Diaper J, Chevalley C, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97(6):1558–65.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Licker M, Fauconnet P, Villiger Y, Tschopp JM. Acute lung injury and outcomes after thoracic surgery. Curr Opin Anaesthesiol. 2009;22(1):61–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ruffini E, Parola A, Papalia E, Filosso PL, Mancuso M, Oliaro A, et al. Frequency and mortality of acute lung injury and acute respiratory distress syndrome after pulmonary resection for bronchogenic carcinoma. Eur J Cardiothorac Surg. 2001;20(1):30–6. discussion 6–7PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kutlu CA, Williams EA, Evans TW, Pastorino U, Goldstraw P. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg. 2000;69(2):376–80.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Park BJ. Respiratory failure following pulmonary resection. Semin Thorac Cardiovasc Surg. 2007;19(4):374–9.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Neto A, Hemmes S, Barbas C, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med. 2014;2(12):1007–15.CrossRefGoogle Scholar
  14. 14.
    Zeldin RA, Normandin D, Landtwing D, Peters RM. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87(3):359–65.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Gothard J. Lung injury after thoracic surgery and one-lung ventilation. Curr Opin Anaesthesiol. 2006;19(1):5–10.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Casado D, Lopez F, Marti R. Perioperative fluid management and major respiratory complications in patients undergoing esophagectomy. Dis Esophagus. 2010;23(7):523–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Slinger PD. Acute lung injury after pulmonary resection: more pieces of the puzzle. Anesth Analg. 2003;97(6):1555–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Waller DA, Keavey P, Woodfine L, Dark JH. Pulmonary endothelial permeability changes after major lung resection. Ann Thorac Surg. 1996;61(5):1435–40.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Eichenbaum KD, Neustein SM. Acute lung injury after thoracic surgery. J Cardiothorac Vasc Anesth. 2010;24(4):681–90.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Nohl-Oser HC. An investigation of the anatomy of the lymphatic drainage of the lungs as shown by the lymphatic spread of bronchial carcinoma. Ann R Coll Surg Engl. 1972;51(3):157–76.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Turnage WS, Lunn JJ. Postpneumonectomy pulmonary edema. A retrospective analysis of associated variables. Chest. 1993;103(6):1646–50.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Fernandez-Perez ER, Sprung J, Afessa B, Warner DO, Vachon CM, Schroeder DR, et al. Intraoperative ventilator settings and acute lung injury after elective surgery: a nested case control study. Thorax. 2009;64(2):121–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Sen S, Sen S, Senturk E, Kuman NK. Postresectional lung injury in thoracic surgery pre and intraoperative risk factors: a retrospective clinical study of a hundred forty-three cases. J Cardiothorac Surg. 2010;5:62.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Moss M, Bucher B, Moore FA, Moore EE, Parsons PE. The role of chronic alcohol abuse in the development of acute respiratory distress syndrome in adults. JAMA. 1996;275(1):50–4.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Parquin F, Marchal M, Mehiri S, Herve P, Lescot B. Post-pneumonectomy pulmonary edema: analysis and risk factors. Eur J Cardiothorac Surg. 1996;10(11):929–32. discussion 33PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Dulu A, Pastores SM, Park B, Riedel E, Rusch V, Halpern NA. Prevalence and mortality of acute lung injury and ARDS after lung resection. Chest. 2006;130(1):73–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Perrot E, Guibert B, Mulsant P, Blandin S, Arnaud I, Roy P, et al. Preoperative chemotherapy does not increase complications after nonsmall cell lung cancer resection. Ann Thorac Surg. 2005;80(2):423–7.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Grichnik KP, D'Amico TA. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Semin Cardiothorac Vasc Anesth. 2004;8(4):317–34.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Harpole DH Jr, DeCamp MM Jr, Daley J, Hur K, Oprian CA, Henderson WG, et al. Prognostic models of thirty-day mortality and morbidity after major pulmonary resection. J Thorac Cardiovasc Surg. 1999;117(5):969–79.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ely EW, Wheeler AP, Thompson BT, Ancukiewicz M, Steinberg KP, Bernard GR. Recovery rate and prognosis in older persons who develop acute lung injury and the acute respiratory distress syndrome. Ann Intern Med. 2002;136(1):25–36.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Fernandez-Perez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105(1):14–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Blank RS, Hucklenbruch C, Gurka KK, Scalzo DC, Wang XQ, Jones DR, et al. Intraoperative factors and the risk of respiratory complications after pneumonectomy. Ann Thorac Surg. 2011;92(4):1188–94.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    National Heart L, Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.CrossRefGoogle Scholar
  34. 34.
    Wiedemann HP. A perspective on the fluids and catheters treatment trial (FACTT). Fluid restriction is superior in acute lung injury and ARDS. Cleve Clin J Med. 2008;75(1):42–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Barmparas G, Liou D, Lee D, Fierro N, Bloom M, Ley E, et al. Impact of positive fluid balance on critically ill surgical patients: a prospective observational study. J Crit Care. 2014;29(6):936–41.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Arslantas MK, Kara HV, Tuncer BB, Yildizeli B, Yuksel M, Bostanci K, et al. Effect of the amount of intraoperative fluid administration on postoperative pulmonary complications following anatomic lung resections. J Thorac Cardiovasc Surg. 2015;149(1):314–20, 21 e1.CrossRefGoogle Scholar
  37. 37.
    Tandon S, Batchelor A, Bullock R, Gascoigne A, Griffin M, Hayes N, et al. Peri-operative risk factors for acute lung injury after elective oesophagectomy. Br J Anaesth. 2001;86(5):633–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Jacob M, Chappell D, Conzen P, Finsterer U, Rehm M. Blood volume is normal after pre-operative overnight fasting. Acta Anaesthesiol Scand. 2008;52(4):522–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Lamke LO, Nilsson GE, Reithner HL. Water loss by evaporation from the abdominal cavity during surgery. Acta Chir Scand. 1977;143(5):279–84.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Jacob M, Chappell D, Rehm M. The ‘third space’–fact or fiction? Best Pract Res Clin Anaesthesiol. 2009;23(2):145–57.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Rehm M, Haller M, Orth V, Kreimeier U, Jacob M, Dressel H, et al. Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology. 2001;95(4):849–56.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Rehm M, Orth V, Kreimeier U, Thiel M, Haller M, Brechtelsbauer H, et al. Changes in intravascular volume during acute normovolemic hemodilution and intraoperative retransfusion in patients with radical hysterectomy. Anesthesiology. 2000;92(3):657–64.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Perko MJ, Jarnvig IL, Hojgaard-Rasmussen N, Eliasen K, Arendrup H. Electric impedance for evaluation of body fluid balance in cardiac surgical patients. J Cardiothorac Vasc Anesth. 2001;15(1):44–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Robarts WM. Nature of the disturbance in the body fluid compartments during and after surgical operations. Br J Surg. 1979;66(10):691–5.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Lowell JA, Schifferdecker C, Driscoll DF, Benotti PN, Bistrian BR. Postoperative fluid overload: not a benign problem. Crit Care Med. 1990;18(7):728–33.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Drummer C, Gerzer R, Heer M, Molz B, Bie P, Schlossberger M, et al. Effects of an acute saline infusion on fluid and electrolyte metabolism in humans. Am J Phys. 1992;262(5 Pt 2):F744–54.Google Scholar
  47. 47.
    Drummer C, Heer M, Baisch F, Blomqvist CG, Lang RE, Maass H, et al. Diuresis and natriuresis following isotonic saline infusion in healthy young volunteers before, during, and after HDT. Acta Physiol Scand Suppl. 1992;604:101–11.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Chan ST, Kapadia CR, Johnson AW, Radcliffe AG, Dudley HA. Extracellular fluid volume expansion and third space sequestration at the site of small bowel anastomoses. Br J Surg. 1983;70(1):36–9.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19(4):312–26.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Levick JR. Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp Physiol. 1991;76(6):825–57.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol. 2004;557(Pt 3):889–907.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hu X, Adamson RH, Liu B, Curry FE, Weinbaum S. Starling forces that oppose filtration after tissue oncotic pressure is increased. Am J Physiol Heart Circ Physiol. 2000;279(4):H1724–36.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Becker BF, Chappell D, Jacob M. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol. 2010;105(6):687–701.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000;440(5):653–66.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Curry FR. Microvascular solute and water transport. Microcirculation. 2005;12(1):17–31.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Chappell D, Jacob M. Role of the glycocalyx in fluid management: small things matter. Best Pract Res Clin Anaesthesiol. 2014;28(3):227–34.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723–40.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116(17):1896–906.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, Bodelsson M. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock. 2008;30(6):623–7.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254(2):194–200.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Bruegger D, Schwartz L, Chappell D, Jacob M, Rehm M, Vogeser M, et al. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery. Basic Res Cardiol. 2011;106(6):1111–21.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Chappell D, Bruegger D, Potzel J, Jacob M, Brettner F, Vogeser M, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014;18(5):538.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Chappell D, Dorfler N, Jacob M, Rehm M, Welsch U, Conzen P, et al. Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion. Shock. 2010;34(2):133–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Chappell D, Heindl B, Jacob M, Annecke T, Chen C, Rehm M, et al. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology. 2011;115(3):483–91.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012;18(8):1217–23.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Parker JC. Hydraulic conductance of lung endothelial phenotypes and Starling safety factors against edema. Am J Physiol Lung Cell Mol Physiol. 2007;292(2):L378–80.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Parker JC, Stevens T, Randall J, Weber DS, King JA. Hydraulic conductance of pulmonary microvascular and macrovascular endothelial cell monolayers. Am J Physiol Lung Cell Mol Physiol. 2006;291(1):L30–7.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Stevens T, Phan S, Frid MG, Alvarez D, Herzog E, Stenmark KR. Lung vascular cell heterogeneity: endothelium, smooth muscle, and fibroblasts. Proc Am Thorac Soc. 2008;5(7):783–91.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Steppan J, Hofer S, Funke B, Brenner T, Henrich M, Martin E, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res. 2011;165(1):136–41.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Nelson A, Berkestedt I, Bodelsson M. Circulating glycosaminoglycan species in septic shock. Acta Anaesthesiol Scand. 2014;58(1):36–43.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Nettelbladt O, Hallgren R. Hyaluronan (hyaluronic acid) in bronchoalveolar lavage fluid during the development of bleomycin-induced alveolitis in the rat. Am Rev Respir Dis. 1989;140(4):1028–32.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nettelbladt O, Tengblad A, Hallgren R. Lung accumulation of hyaluronan parallels pulmonary edema in experimental alveolitis. Am J Phys. 1989;257(6 Pt 1):L379–84.Google Scholar
  74. 74.
    Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol. 2003;23(9):1541–7.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer : implications for platelet-endothelial cell adhesion. Circulation. 2000;101(13):1500–2.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Huxley VH, Williams DA. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am J Physiol Heart Circ Physiol. 2000;278(4):H1177–85.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Dull RO, Cluff M, Kingston J, Hill D, Chen H, Hoehne S, et al. Lung heparan sulfates modulate K(fc) during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction. Am J Physiol Lung Cell Mol Physiol. 2012;302(9):L816–28.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Dull RO, Mecham I, McJames S. Heparan sulfates mediate pressure-induced increase in lung endothelial hydraulic conductivity via nitric oxide/reactive oxygen species. Am J Physiol Lung Cell Mol Physiol. 2007;292(6):L1452–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Curry FR. Atrial natriuretic peptide: an essential physiological regulator of transvascular fluid, protein transport, and plasma volume. J Clin Invest. 2005;115(6):1458–61.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res. 2003;93(10):e136–42.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Collins SR, Blank RS, Deatherage LS, Dull RO. Special article: the endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg. 2013;117(3):664–74.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Dull RO, Jo H, Sill H, Hollis TM, Tarbell JM. The effect of varying albumin concentration and hydrostatic pressure on hydraulic conductivity and albumin permeability of cultured endothelial monolayers. Microvasc Res. 1991;41(3):390–407.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    McCluskey SA, Karkouti K, Wijeysundera D, Minkovich L, Tait G, Beattie WS. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg. 2013;117(2):412–21.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Morgan TJ, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid-base change during acute normovolaemic haemodilution. Intensive Care Med. 2004;30(7):1432–7.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255(5):821–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(25):2462–3.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Yunos NM, Bellomo R, Glassford N, Sutcliffe H, Lam Q, Bailey M. Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med. 2015;41(2):257–64.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Haase N, Perner A, Hennings LI, Siegemund M, Lauridsen B, Wetterslev M, et al. Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ. 2013;346:f839.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309(7):678–88.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Meybohm P, Van Aken H, De Gasperi A, De Hert S, Della Rocca G, Girbes AR, et al. Re-evaluating currently available data and suggestions for planning randomised controlled studies regarding the use of hydroxyethyl starch in critically ill patients – a multidisciplinary statement. Crit Care. 2013;17(4):R166.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mertes PM, Laxenaire MC, Alla F, Groupe d'Etudes des Reactions Anaphylactoides P. Anaphylactic and anaphylactoid reactions occurring during anesthesia in France in 1999–2000. Anesthesiology. 2003;99(3):536–45.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Barron ME, Wilkes MM, Navickis RJ. A systematic review of the comparative safety of colloids. Arch Surg. 2004;139(5):552–63.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Sirtl C, Laubenthal H, Zumtobel V, Kraft D, Jurecka W. Tissue deposits of hydroxyethyl starch (HES): dose-dependent and time-related. Br J Anaesth. 1999;82(4):510–5.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Van der Linden P, Ickx BE. The effects of colloid solutions on hemostasis. Can J Anaesth. 2006;53(6 Suppl):S30–9.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Jacob M, Chappell D, Hofmann-Kiefer K, Helfen T, Schuelke A, Jacob B, et al. The intravascular volume effect of Ringer’s lactate is below 20%: a prospective study in humans. Crit Care. 2012;16(3):R86.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Jacob M, Rehm M, Orth V, Lotsch M, Brechtelsbauer H, Weninger E, et al. Exact measurement of the volume effect of 6% hydoxyethyl starch 130/0.4 (Voluven) during acute preoperative normovolemic hemodilution. Anaesthesist. 2003;52(10):896–904.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;2:CD000567.Google Scholar
  101. 101.
    Verheij J, van Lingen A, Raijmakers PG, Rijnsburger ER, Veerman DP, Wisselink W, et al. Effect of fluid loading with saline or colloids on pulmonary permeability, oedema and lung injury score after cardiac and major vascular surgery. Br J Anaesth. 2006;96(1):21–30.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Huang CC, Kao KC, Hsu KH, Ko HW, Li LF, Hsieh MJ, et al. Effects of hydroxyethyl starch resuscitation on extravascular lung water and pulmonary permeability in sepsis-related acute respiratory distress syndrome. Crit Care Med. 2009;37(6):1948–55.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    van der Heijden M, Verheij J, van Nieuw Amerongen GP, Groeneveld AB. Crystalloid or colloid fluid loading and pulmonary permeability, edema, and injury in septic and nonseptic critically ill patients with hypovolemia. Crit Care Med. 2009;37(4):1275–81.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Boffa DJ, Allen MS, Grab JD, Gaissert HA, Harpole DH, Wright CD. Data from the Society of Thoracic Surgeons General Thoracic Surgery database: the surgical management of primary lung tumors. J Thorac Cardiovasc Surg. 2008;135(2):247–54.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Raymond DP, Seder CW, Wright CD, Magee MJ, Kosinski AS, Cassivi SD, et al. Predictors of major morbidity or mortality after resection for esophageal cancer: a Society of Thoracic Surgeons General Thoracic Surgery database risk adjustment model. Ann Thorac Surg. 2016;102(1):207–14.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute dialysis quality Initiative w. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Ishikawa S, Griesdale DE, Lohser J. Acute kidney injury within 72 hours after lung transplantation: incidence and perioperative risk factors. J Cardiothorac Vasc Anesth. 2014;28(4):931–5.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Licker M, Cartier V, Robert J, Diaper J, Villiger Y, Tschopp JM, et al. Risk factors of acute kidney injury according to RIFLE criteria after lung cancer surgery. Ann Thorac Surg. 2011;91(3):844–50.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Kheterpal S, Tremper KK, Englesbe MJ, O'Reilly M, Shanks AM, Fetterman DM, et al. Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology. 2007;107(6):892–902.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Ahn HJ, Kim JA, Lee AR, Yang M, Jung HJ, Heo B. The risk of acute kidney injury from fluid restriction and hydroxyethyl starch in thoracic surgery. Anesth Analg. 2016;122(1):186–93.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Egal M, de Geus HR, van Bommel J, Groeneveld AB. Targeting oliguria reversal in perioperative restrictive fluid management does not influence the occurrence of renal dysfunction: a systematic review and meta-analysis. Eur J Anaesthesiol. 2016;33(6):425–35.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774–81.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Marik PE. Fluid responsiveness and the six guiding principles of fluid resuscitation. Crit Care Med. 2016;44(10):1920–2.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122(6):2080–6.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Chung FT, Lin HC, Kuo CH, Yu CT, Chou CL, Lee KY, et al. Extravascular lung water correlates multiorgan dysfunction syndrome and mortality in sepsis. PLoS One. 2010;5(12):e15265.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Marik PE. Iatrogenic salt water drowning and the hazards of a high central venous pressure. Ann Intensive Care. 2014;4:21.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121(6):2000–8.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35(1):64–8.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Hadian M, Pinsky MR. Evidence-based review of the use of the pulmonary artery catheter: impact data and complications. Crit Care. 2006;10(Suppl 3):S8.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Perel A, Habicher M, Sander M. Bench-to-bedside review: functional hemodynamics during surgery – should it be used for all high-risk cases? Crit Care. 2013;17(1):203.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162(1):134–8.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119(3):867–73.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a "gray zone" approach. Anesthesiology. 2011;115(2):231–41.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31(4):517–23.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Lansdorp B, Lemson J, van Putten MJ, de Keijzer A, van der Hoeven JG, Pickkers P. Dynamic indices do not predict volume responsiveness in routine clinical practice. Br J Anaesth. 2012;108(3):395–401.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Reuter DA, Goresch T, Goepfert MS, Wildhirt SM, Kilger E, Goetz AE. Effects of mid-line thoracotomy on the interaction between mechanical ventilation and cardiac filling during cardiac surgery. Br J Anaesth. 2004;92(6):808–13.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Rex S, Schalte G, Schroth S, de Waal EE, Metzelder S, Overbeck Y, et al. Limitations of arterial pulse pressure variation and left ventricular stroke volume variation in estimating cardiac pre-load during open heart surgery. Acta Anaesthesiol Scand. 2007;51(9):1258–67.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Wyffels PA, Sergeant P, Wouters PF. The value of pulse pressure and stroke volume variation as predictors of fluid responsiveness during open chest surgery. Anaesthesia. 2010;65(7):704–9.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Lorne E, Mahjoub Y, Zogheib E, Debec G, Ben Ammar A, Trojette F, et al. Influence of open chest conditions on pulse pressure variations. Ann Fr Anesth Reanim. 2011;30(2):117–21.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Lee JH, Jeon Y, Bahk JH, Gil NS, Hong DM, Kim JH, et al. Pulse pressure variation as a predictor of fluid responsiveness during one-lung ventilation for lung surgery using thoracotomy: randomised controlled study. Eur J Anaesthesiol. 2011;28(1):39–44.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Suehiro K, Okutani R. Influence of tidal volume for stroke volume variation to predict fluid responsiveness in patients undergoing one-lung ventilation. J Anesth. 2011;25(5):777–80.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    de Waal EE, Rex S, Kruitwagen CL, Kalkman CJ, Buhre WF. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. Crit Care Med. 2009;37(2):510–5.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Naik BI, Durieux ME. Hemodynamic monitoring devices: putting it all together. Best Pract Res Clin Anaesthesiol. 2014;28(4):477–88.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Downs EA, Isbell JM. Impact of hemodynamic monitoring on clinical outcomes. Best Pract Res Clin Anaesthesiol. 2014;28(4):463–76.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;1(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Nunes TS, Ladeira RT, Bafi AT, de Azevedo LC, Machado FR, Freitas FG. Duration of hemodynamic effects of crystalloids in patients with circulatory shock after initial resuscitation. Ann Intensive Care. 2014;4:25.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Glassford NJ, Eastwood GM, Bellomo R. Physiological changes after fluid bolus therapy in sepsis: a systematic review of contemporary data. Crit Care. 2014;18(6):696.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Lammi MR, Aiello B, Burg GT, Rehman T, Douglas IS, Wheeler AP, et al. Response to fluid boluses in the fluid and catheter treatment trial. Chest. 2015;148(4):919–26.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Maitland K, George EC, Evans JA, Kiguli S, Olupot-Olupot P, Akech SO, et al. Exploring mechanisms of excess mortality with early fluid resuscitation: insights from the FEAST trial. BMC Med. 2013;11:68.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Veenstra G, Ince C, Boerma EC. Direct markers of organ perfusion to guide fluid therapy: when to start, when to stop. Best Pract Res Clin Anaesthesiol. 2014;28(3):217–26.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Brady M, Kinn S, Stuart P. Preoperative fasting for adults to prevent perioperative complications. Cochrane Database Syst Rev. 2003;4:CD004423.Google Scholar
  143. 143.
    Lobo DN, Macafee DA, Allison SP. How perioperative fluid balance influences postoperative outcomes. Best Pract Res Clin Anaesthesiol. 2006;20(3):439–55.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Awad S, Varadhan KK, Ljungqvist O, Lobo DN. A meta-analysis of randomised controlled trials on preoperative oral carbohydrate treatment in elective surgery. Clin Nutr. 2013;32(1):34–44.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112(6):1392–402.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Lees N, Hamilton M, Rhodes A. Clinical review: goal-directed therapy in high risk surgical patients. Crit Care. 2009;13(5):231.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Gurgel ST, do Nascimento P Jr. Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg. 2011;112(6):1384–91.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Navarro LH, Bloomstone JA, Auler JO Jr, Cannesson M, Rocca GD, Gan TJ, et al. Perioperative fluid therapy: a statement from the international Fluid Optimization Group. Perioper Med (Lond). 2015;4:3.CrossRefGoogle Scholar
  149. 149.
    Evans RG, Naidu B. Does a conservative fluid management strategy in the perioperative management of lung resection patients reduce the risk of acute lung injury? Interact Cardiovasc Thorac Surg. 2012;15(3):498–504.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Assaad S, Kyriakides T, Tellides G, Kim AW, Perkal M, Perrino A. Extravascular lung water and tissue perfusion biomarkers after lung resection surgery under a Normovolemic Fluid Protocol. J Cardiothorac Vasc Anesth. 2015;29(4):977–83.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Haas S, Eichhorn V, Hasbach T, Trepte C, Kutup A, Goetz AE, et al. Goal-directed fluid therapy using stroke volume variation does not result in pulmonary fluid overload in thoracic surgery requiring one-lung ventilation. Crit Care Res Pract. 2012;2012:687018.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Zhang J, Chen CQ, Lei XZ, Feng ZY, Zhu SM. Goal-directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations: a pilot study. Clinics (Sao Paulo). 2013;68(7):1065–70.CrossRefGoogle Scholar
  153. 153.
    Georger JF, Hamzaoui O, Chaari A, Maizel J, Richard C, Teboul JL. Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients. Intensive Care Med. 2010;36(11):1882–9.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Hamzaoui O, Georger JF, Monnet X, Ksouri H, Maizel J, Richard C, et al. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care. 2010;14(4):R142.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Wuethrich PY, Burkhard FC, Thalmann GN, Stueber F, Studer UE. Restrictive deferred hydration combined with preemptive norepinephrine infusion during radical cystectomy reduces postoperative complications and hospitalization time: a randomized clinical trial. Anesthesiology. 2014;120(2):365–77.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Wuethrich PY, Studer UE, Thalmann GN, Burkhard FC. Intraoperative continuous norepinephrine infusion combined with restrictive deferred hydration significantly reduces the need for blood transfusion in patients undergoing open radical cystectomy: results of a prospective randomised trial. Eur Urol. 2014;66(2):352–60.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Brienza N, Giglio MT, Marucci M, Fiore T. Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med. 2009;37(6):2079–90.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Marjanovic G, Villain C, Juettner E, zur Hausen A, Hoeppner J, Hopt UT, et al. Impact of different crystalloid volume regimes on intestinal anastomotic stability. Ann Surg. 2009;249(2):181–5.CrossRefPubMedGoogle Scholar
  159. 159.
    Schnuriger B, Inaba K, Wu T, Eberle BM, Belzberg H, Demetriades D. Crystalloids after primary colon resection and anastomosis at initial trauma laparotomy: excessive volumes are associated with anastomotic leakage. J Trauma. 2011;70(3):603–10.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Veelo DP, van Berge Henegouwen MI, Ouwehand KS, Geerts BF, Anderegg MC, van Dieren S, et al. Effect of goal-directed therapy on outcome after esophageal surgery: a quality improvement study. PLoS One. 2017;12(3):e0172806.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Glatz T, Kulemann B, Marjanovic G, Bregenzer S, Makowiec F, Hoeppner J. Postoperative fluid overload is a risk factor for adverse surgical outcome in patients undergoing esophagectomy for esophageal cancer: a retrospective study in 335 patients. BMC Surg. 2017;17(1):6.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Theodorou D, Drimousis PG, Larentzakis A, Papalois A, Toutouzas KG, Katsaragakis S. The effects of vasopressors on perfusion of gastric graft after esophagectomy. An experimental study. J Gastrointest Surg. 2008;12(9):1497–501.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Al-Rawi OY, Pennefather SH, Page RD, Dave I, Russell GN. The effect of thoracic epidural bupivacaine and an intravenous adrenaline infusion on gastric tube blood flow during esophagectomy. Anesth Analg. 2008;106(3):884–7. table of contentsPubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Pathak D, Pennefather SH, Russell GN, Al Rawi O, Dave IC, Gilby S, et al. Phenylephrine infusion improves blood flow to the stomach during oesophagectomy in the presence of a thoracic epidural analgesia. Eur J Cardiothorac Surg. 2013;44(1):130–3.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of AnesthesiologyDuke University Medical CenterDurhamUSA

Personalised recommendations