Performance of a Buffer Between Electronic and All-Optical Networks, Diffusion Approximation Model

  • Godlove Suila Kuaban
  • Edelqueen Anyam
  • Tadeusz CzachórskiEmail author
  • Artur Rataj
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 935)


We present a model of the edge router between electronic and all optical networks. Arriving electronic packets of variable sizes are stored at a buffer the volume of which is equal to the fixed size of optical packet. When the buffer is filled, its content becomes an optical buffer and dispatched to optical network. To avoid excessive delays, the optical packet is sent also after a specified deadline. The model is based on diffusion approximation and validated by discrete event simulation. Its goal is to determine the probability distribution of the effective optical packet sizes an distribution of their interdeparture times as a function of the interarrival time distribution, distribution of the electronic packet sizes, the value of deadline and the size of buffer. We use real traffic data from the CAIDA (Center for Applied Internet Data Analysis) repositories.


  1. 1.
  2. 2.
  3. 3.
    Cox, R.P., Miller, H.D.: The Theory of Stochastic Processes. Chapman and Hall, London (1965)zbMATHGoogle Scholar
  4. 4.
    Domańska, J., Kotuliak, I., Atmaca, T., Czachórski, T.: Optical packet filling, In: 10th Polish Teletraffic Symposium PSRT2003 (2003)Google Scholar
  5. 5.
    Kuaban, G.S.: Markovian queuing model for performance evaluation of the edge node in IP over all-optical networks, Masters thesis, Silesian University of Technology (2017)Google Scholar
  6. 6.
    Suila, K.G., Czachórski, T., Rataj, A.: A queueing model of the edge node in ip over all-optical networks. In: Gaj, P., Sawicki, M., Suchacka, G., Kwiecień, A. (eds.) CN 2018. CCIS, vol. 860, pp. 258–271. Springer, Cham (2018). Scholar
  7. 7.
    Kotuliak, I.: Feasibility study of optical packet switching: performance evaluation. Ph.D. thesis, University of Versailles-St-Quentin-en-Yveline (2003)Google Scholar
  8. 8.
    Li, H., Thng, I.: Edge node buffer usage in optical burst switching networks, Photonic Netw. Commun. 13(1), 31–51. Springer Science+Business Media, LLC (2006)Google Scholar
  9. 9.
    Toksöz, M.A., Akar, N.: Dynamic threshold-based assembly algorithms for optical burst switching networks subject to burst rate constraints. Photonic Netw. Commun. 20(2), 120–130. Springer Science+Business Media, LLC (2010)Google Scholar
  10. 10.
    Czachórski, T.: A diffusion process with instantaneous jumps back and its application, Archiwum informatyki Teoretycznej i Stsowanej, t.2 (z.1-2) 27–46 (1990)Google Scholar
  11. 11.
    Czachórski, T., Domański, A., Domańska, J., Rataj, A.: A study of IP router queues with the use of markov models. In: Gaj, P., Kwiecień, A., Stera, P. (eds.) CN 2016. CCIS, vol. 608, pp. 294–305. Springer, Cham (2016). Scholar
  12. 12.
    Gelenbe, E.: On approximate computer systems models. J. ACM 22(2), 261–269 (1975)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gelenbe, E.: Diffusion approximations: waiting times and batch arrival. Acta Inf. 12, 285–303 (1979)CrossRefGoogle Scholar
  14. 14.
    Atmaca, T., Kamli, A., Rataj, A.: Adaptation of the NGREEN architecture for a bursty traffic. In: Proceedings of CN 2018. Institut Mines-Telecom, Gliwice, FranceGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Godlove Suila Kuaban
    • 1
    • 2
  • Edelqueen Anyam
    • 2
  • Tadeusz Czachórski
    • 1
    Email author
  • Artur Rataj
    • 1
  1. 1.Polish Academy of SciencesInstitute of Theoretical and Applied InformaticsGliwicePoland
  2. 2.Institute of Informatics, Silesian Technical UniversityGliwicePoland

Personalised recommendations