Advertisement

Methods of Tooth Equator Estimation

  • Agnieszka Anna Tomaka
  • Dariusz Pojda
  • Leszek Luchowski
  • Michał Tarnawski
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 935)

Abstract

Full automation of the designing process of an occlusal splint requires an algorithm to determine the boundary of the splint. For this purpose, the idea of tooth equator is frequently used. The task is to find the approximate level where the teeth are widest, and then cut off the shape of the splint there. The article presents methods for automatic estimation of the tooth equator, used to determine the splint boundary.

Keywords

Tooth equator Occlusal splint Mesh segmentation 

References

  1. 1.
    Ash, M., Ramfjord, S., Schmidseder, J.: Terapia przy użyciu szyn okluzyjnych. Urban i Partner - Wydawnictwo Medyczne, Wrocław (1999)Google Scholar
  2. 2.
    de Boor, C.: A Practical Guide to Splines. No. 27 in Applied Mathematical Sciences, 1 edn. Springer-Verlag, New York (1978)Google Scholar
  3. 3.
    Botsch, M., Pauly, M., Rossl, C., Bischoff, S., Kobbelt, L.: Geometric modeling based on triangle meshes. In: SIGGRAPH 2006 (2006)Google Scholar
  4. 4.
    Chen, X., Li, X., Xu, L., Sun, Y., Politis, C., Egger, J.: Development of a computer-aided design software for dental splint in orthognathic surgery. Sci. Rep. 6, 38867 (2016)Google Scholar
  5. 5.
    Gateno, J., Xia, J., Teichgraeber, J.F., Rosen, A., Hultgren, B., Vadnais, T.: The precision of computer-generated surgical splints. JOMS 61(7), 814–817 (2003)CrossRefGoogle Scholar
  6. 6.
    Ju, T.: Robust repair of polygonal models. ACM Trans. Graph. 23(3), 888–895 (2004)CrossRefGoogle Scholar
  7. 7.
    Kaiser, J.F.: Nonrecursive Digital Filter Design Using the I-Sinh Window Function. In: Proceedings of the 1974 IEEE IEEE International Symposium on Circuits and Systems, pp. 20–23 (1974)Google Scholar
  8. 8.
    Moon, B.S.: An explicit solution for the cubic spline interpolation for functions of a single variable. Appl. Math. Comput. 117(2–3), 251–255 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Nasef, A.A., El-Beialy, A.R., Mostafa, Y.A.: Virtual techniques for designing and fabricating a retainer. AJODO 146(3), 394–398 (2014)Google Scholar
  10. 10.
    Oppenheim, A.V., Schafer, R.: Digital Signal Processing. MIT video course, Prentice-Hall (1975)Google Scholar
  11. 11.
    Palaskar, J.N., Murali, R., Bansal, S.: Centric relation definition: a historical and contemporary prosthodontic persp. J. Ind. Prost. Soc. 13(3), 149–154 (2013)Google Scholar
  12. 12.
    Pojda, D., Tomaka, A.A., Luchowski, L., Skabek, K., Tarnawski, M.: Applying computational geometry to designing an occlusal splint. In: CompIMAGE 2018, KrakówGoogle Scholar
  13. 13.
    de Rezende, A.B.: A new parallelometer. J. Prosthet. Dent. 21(1), 79–85 (1969)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Agnieszka Anna Tomaka
    • 1
  • Dariusz Pojda
    • 1
  • Leszek Luchowski
    • 1
  • Michał Tarnawski
    • 1
  1. 1.Institute of Theoretical and Applied Informatics, Polish Academy of SciencesGliwicePoland

Personalised recommendations