Advertisement

The Competitiveness of Randomized Strategies for Canadians via Systems of Linear Inequalities

  • Pierre Bergé
  • Julien Hemery
  • Arpad Rimmel
  • Joanna Tomasik
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 935)

Abstract

The Canadian Traveller Problem is a PSPACE-complete optimization problem where a traveller traverses an undirected weighted graph G from source s to target t where some edges \(E_*\) are blocked. At the beginning, the traveller does not know which edges are blocked. He discovers them when arriving at one of their endpoints. The objective is to minimize the distance traversed to reach t.

Westphal proved that no randomized strategy has a competitive ratio smaller than \(\left| E_* \right| +1\). We show, using linear algebra techniques, that this bound cannot be attained, especially on a specific class of graphs: apex trees. Indeed, no randomized strategy can be \(\left( \left| E_* \right| +1\right) \)-competitive, even on apex trees with only three simple \((s,t)\)-paths.

References

  1. 1.
    Bar-Noy, A., Schieber, B.: The Canadian Traveller Problem. In: Proceedings of ACM/SIAM SODA, pp. 261–270 (1991)Google Scholar
  2. 2.
    Bender, M., Westphal, S.: An optimal randomized online algorithm for the k-Canadian Traveller Problem on node-disjoint paths. J. Comb. Optim. 30(1), 87–96 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bergé, P., Hemery, J., Rimmel, A., Tomasik, J.: On the competitiveness of memoryless strategies for the k-Canadian Traveller Problem. Inform. Proces. Lett. (submitted)Google Scholar
  4. 4.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, New York, USA (1998)Google Scholar
  5. 5.
    Demaine, E.D., Huang, Y., Liao, C.-S., Sadakane, K.: Canadians should travel randomly. In: Proceedings of ICALP, pp. 380–391 (2014)Google Scholar
  6. 6.
    Farkas, J.: Uber die Theorie der Einfachen Ungleichungen. J. fur die Reine und Angewandte Math. 124, 1–27 (1902)Google Scholar
  7. 7.
    Matousek, J., Gärtner, B.: Understanding and Using Linear Programming. Springer, New York, USA (2006)zbMATHGoogle Scholar
  8. 8.
    Papadimitriou, C., Yannakakis, M.: Shortest paths without a map. Theor. Comput. Sci. 84(1), 127–150 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Westphal, S.: A note on the k-Canadian Traveller Problem. Inform. Proces. Lett. 106(3), 87–89 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Pierre Bergé
    • 1
  • Julien Hemery
    • 2
  • Arpad Rimmel
    • 2
  • Joanna Tomasik
    • 2
  1. 1.LRIUniversité Paris-Sud, Université Paris-SaclayOrsayFrance
  2. 2.LRICentraleSupélec, Université Paris-SaclayOrsayFrance

Personalised recommendations