Determination of the Cooling Medium Composition in an Indirect Cooling System

  • Alexander HerzogEmail author
  • Carolina Pelka
  • Rudolf Weiss
  • Frank Skorupa
Conference paper


In recent years, strict exhaust emission legislation alongside the demand for high efficiency and low fuel consumption have caused an enormous effort in research and development in the automotive industry. As far as thermal management is concerned, a growing number of on-demand temperature control strategies is recognized. While direct heat exchanging devices offer limited possibilities for such approaches, indirect cooling systems facilitate their implementation to a large extent. This allows to adjust the temperature of the various components at or close to the vehicle’s engine, independent of the current driving situation. The aforementioned temperature control strategies usually rely on the knowledge of the state variables. The latter are expressed by means of data supplied by the vehicle’s ECU and the fluid properties. In particular, the cooling medium’s composition has a major impact on the performance of the overall cooling system. This is due to the strong dependence of the viscosity and the heat capacity on the concentration c of ethylene glycol in the coolant mixture. On the other hand, the composition of the cooling mixture may be influenced by the vehicle’s owner by adding water or glycol to the cooling circuit. This may destabilize the temperature control which, in the worst case, may cause damage to the vehicle components. Assuming a binary mixture of water and ethylene glycol we suggest an approach which allows to determine c by means of quantities which are supplied by the vehicle’s ECU. To this end, the dimensionless temperature change of the respective heat exchanger is expressed by means of the heat capacity flow of the cooling medium. This expression can be solved for the concentration either by means of characteristic maps or analytically. Exemplifying both these approaches on the basis of vehicle measurements, we discuss possible applications such as on-board diagnosis and adaptive control.


  1. 1.
    Heuck, M.: Modellgestütztes Luftsystem-Management für einen Pkw-Dieselmotor mit Hoch- und Niederdruck-Abgasrückführsystemen. Shaker, Aachen (2009)Google Scholar
  2. 2.
    Canova, M., Midlam-Mohler, S., Soliman, A., Guezennec, Y., Rizzoni, G.: Control-Oriented Modeling of NOx Aftertreatment Systems, SAE Technical Paper 2007-24-0106 (2007)Google Scholar
  3. 3.
    Presti, M., Pace, L., Poggio, L., Rossi, V.: Cold Start Thermal Management with Electrically Heated Catalyst: A Way to Lower Fuel Consumption, SAE Technical Paper 2013-24-0158 (2013)Google Scholar
  4. 4.
    Käppner, C., Fritzsche, J., Gonzalez, N.G., Lange, H.: Hybrid-optimized engine cooling concept. In: Junior C., Jänsch, D., Dingel, O. (eds.) Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, ETA 2016. Springer, Cham (2017)Google Scholar
  5. 5.
    Pan, D., Xu, S., Lin, C., Chang, G.: Thermal Management of Power Batteries for Electric Vehicles Using Phase Change Materials: A Review, SAE Technical Paper 2016-01-1204 (2016)Google Scholar
  6. 6.
    Havlik, F., Hofmann, P.: Restwärmenutzung im Fahrzeug durch thermochemische Energiespeicher—Residual Heat Utilisation in Vehicles by Thermochemical Energy Storage, FVV Frühjahrstagung 247, Bad Neuenahr (2018)Google Scholar
  7. 7.
    Cortona, E., Onder, C.: Engine Thermal Management with Electric Cooling Pump, SAE Technical Paper 2000-01-0965 (2000)Google Scholar
  8. 8.
    Wagner, J.R., Ghone, M., Dawson, D.M., Marotta, E.: Coolant Flow Control Strategies for Automotive Thermal Management Systems, SAE Technical Paper 2002-01-0713 (2002)Google Scholar
  9. 9.
    Wagner, J.R., Srinivasan, V., Dawson, D.M., Marotta, E.E.: Smart Thermostat and Coolant Pump Control for Engine Thermal Management Systems, SAE Technical Paper 2003-01-0272 (2003)Google Scholar
  10. 10.
    Setlur, P., Wagner, J.R., Dawson, D.M., Marotta, E.E.: An advanced engine thermal management system: nonlinear control and test. IEEE/ASME Trans. Mechatron. 10(2), 210 (2005)CrossRefGoogle Scholar
  11. 11.
    Salah, M.H., Mitchell, T.H., Wagner, J.R., Dawson, M.D.: Nonlinear-control strategy for advanced vehicle thermal-management systems. IEEE Trans. Veh. Tech. 57(1), 127 (2008)CrossRefGoogle Scholar
  12. 12.
    Castiglione, T., Pizzonia, F., Bova, S.: A novel cooling system control strategy for internal combustion engines. SAE Int. J. Mater. Manuf. 9(2), 294 (2016)CrossRefGoogle Scholar
  13. 13.
    Schröder, C., Petr, P., Gräber, M., Köhler, J.: Nichtlineare modellbasierte prädiktive Regelung der Betriebsstrategie in Hybridfahrzeugen. In: Steinberg, P. (ed.) Wärmemanagement des Kraftfahrzeugs IX, Renningen (2014)Google Scholar
  14. 14.
    Roetzel, W., Xuan, Y.: Dynamic Behaviour of Heat Exchangers, vol. 3. WIT Press/Computational Mechanics Publications, Boston, Southampton (1998)zbMATHGoogle Scholar
  15. 15.
    Herzog, A., Pelka, C., Skorupa, F.: Analytical description of thermal control circuits in vehicles. In: Junior C., Jänsch, D., Dingel, O. (eds.) Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, ETA 2016. Springer, Cham (2017)Google Scholar
  16. 16.
    VDI Heat Atlas, 2nd edn. Verein Deutscher Ingenieure VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen. Springer, Heidelberg (2010)Google Scholar
  17. 17.
    Herzog, A., Weiss, R., Skorupa, F.: Verfahren zur Ermittlung einer Kühlmittelkonzentration, Patentschrift, DE 10 2016 124 652 B3 (2018)Google Scholar
  18. 18.
    Herzog, A., Skorupa, F., Meinecke, R., Frase, R.: Thermal management in the air intake system of combustion engines. MTZ Worldwide 75(5), 24–29 (2014)CrossRefGoogle Scholar
  19. 19.
    For a detailed discussion of the determination of \(\Gamma _1\), we refer to Refs. [1,15] and references thereinGoogle Scholar
  20. 20.
    Unambiguous outliers have been removed from the dynamical data setGoogle Scholar
  21. 21.
    Rötzel, W., Spang, B.: Analytisches Verfahren zur thermischen Berechnung mehrgängiger Rohrbündelwämeübertrager, Fortschr.-Ber. VDI, vol. 19, p. 18. VDI-Verlag, Düsseldorf (1987)Google Scholar
  22. 22.
    Rötzel, W.: Spang B: thermal calculation of multipass shell and tube heat exchangers. Chem. Eng. Res. Des. 67, 115 (1989)Google Scholar
  23. 23.
    The analytical model is derived from the same data sets as used for the calibration of the characteristic mapGoogle Scholar
  24. 24.
    Zwillinger, D., Moll, V. (eds.): Gradshteyn and Ryzhik’s Table of Integrals, Series, and Products, 8th edn. Academic Press, Elsevier, Waltham, San Diego, London, Oxford (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander Herzog
    • 1
    Email author
  • Carolina Pelka
    • 1
  • Rudolf Weiss
    • 1
  • Frank Skorupa
    • 1
  1. 1.IAV GmbHGifhornGermany

Personalised recommendations