Auxiliary Heating, Cooling and Power Generation in Vehicles Based on Stirling Engine Technology

  • Hans-Detlev KühlEmail author
Conference paper


Regenerative cycles, the most well-known of which is the Stirling cycle, may be used for prime movers as well as for heat pump or refrigeration applications. Furthermore, it was demonstrated experimentally in a recent research project that it is possible to devise a machine that may be toggled between different cycles and operating modes in a demand-dependent way, and to achieve a satisfactory performance in any of these. The experimental machine realized within this project may be operated as a Stirling engine, as a thermally actuated Vuilleumier cycle heat pump or in a so-called hybrid mode featuring both a mechanical power production and a heat pump effect. The original objective was to develop a convertible domestic energy supply system that may be adjusted to varying heat and power demands, but particularly the hybrid cycle also appears to be well-suited for auxiliary heating cooling and power generation in vehicular applications, possibly even without the option of switching to different modes. The thermodynamic operating principle of this cycle, potential design options as well as performance predictions are presented and discussed.


Stirling cycle Auxiliary power unit Heating Air conditioning 


  1. 1.
    Walker, G., Reader, G., Fauvel, O.R., Bingham, R.E.: The Stirling Alternative: Power Systems, Refrigerants and Heat Pumps. Gordon and Breach Publishers, Yverdon (1994)Google Scholar
  2. 2.
    Köhler, J.W.L., Jonkers, C.O.: Grundlagen der Gaskältemaschine. Philips Tech. Rev. 15(11), 305–344 (1954)Google Scholar
  3. 3.
    Dros, A.A.: Eine Gaskältemaschine mit hydraulischem Kolbenantrieb für industrielle Anwendungen. Philips Tech. Rev. 26(12), 346–359 (1965)Google Scholar
  4. 4.
    Haarhuis, G.J.: Der Philips-Heliumverflüssiger. Philips Tech. Rev. 29, 202–209 (1969)Google Scholar
  5. 5.
    Dijksman, J.F., Goverde, G.C., den Breeijen, P.: Experimental investigation of the behaviour of a 150 Watts Philips new generation cryocooler. In: Proceedings of the 12th ICEC, Southampton, pp. 17–22 (1988)Google Scholar
  6. 6.
    Radebaugh, R.: Cryocoolers: the state of the art and recent developments. J. Phys. Condens. Matter 21(16), 164219 (2009)CrossRefGoogle Scholar
  7. 7.
    Walker, G., Reader, G., Fauvel, R., Bingham, E.: Stirling, near-ambient temperature re-frigerators: innovative compact designs. In: Proceedings of the 6th ISEC, Eindhoven, pp. 327–334 (1993)Google Scholar
  8. 8.
    Deac, I.G.: Miniature stirling cooler for the range of moderate temperature refrigeration. In: Proceedings of the 7th ICSC, Tokyo, pp. 553–558 (1995)Google Scholar
  9. 9.
    Schiefelbein, K., Siegel, A.: Entwicklung einer Stirling-Kältemaschine mit verbesserter Leistungszahl. BMBF final report # 0326971 (1997)Google Scholar
  10. 10.
    Heikrodt, K., Heckt, R.: Gasbetriebene Wärmepumpe zur monovalenten Raumbeheizung und Trinkwassererwärmung. BMBF final report # 0326947E, BVE Thermolift GbR (1999)Google Scholar
  11. 11.
    Carlsen, H.: Results from 20 kW Vuilleumier heat pump test program. In: Proceedings of the 29th IECEC, Monterey, CA, pp. 927–932 (1994)Google Scholar
  12. 12.
    Carlsen, H., Kühl, H.-D., Schulz, S.: Natural gas driven vuilleumier heat pumps for residential heating. In: IIR/DKV-Tagung New Applications of Natural Working Fluids in Refrigeration and Air Conditioning, Hannover, Germany, pp. 405–414 (1994)Google Scholar
  13. 13.
    Rüther, J.: Anwendungsorientierte Weiterentwicklung des Freikolben-Konzeptes für Vuil-leumier-Wärmepumpen. Ph. D. thesis, Chair of Thermodynamics, University of Dortmund (2004)Google Scholar
  14. 14.
    Baumüller, A.: Stirling engines on the way to volume- production-promising applications and realistic steps. In: Proceedings of the 14th ISEC, Groningen (2009)Google Scholar
  15. 15.
    Thomas, B., Wyndorps, A., Böhnisch, H., Lemmer, A., Oechsner, H., Vogtherr, J.: Field testing of small Stirling CHP’s running on bio-, mine and sewage gas. In: Proceedings of the International Stirling Forum, Osnabrück (2006). ISBN 3-9808409-3-XGoogle Scholar
  16. 16.
    Clark, D., Green, A., Welty, S.C., Simms, A., Roberts, G.: Performance and operating characteristics of the Microgen 1 kW free piston Stirling engine. In: Proceedings of the 14th ISEC, Groningen (2009)Google Scholar
  17. 17.
    Geue, I.: Entwicklung, ähnlichkeitstheoretische Skalierung und Untersuchung eines umschaltbaren Systems aus Stirlingmotor und Vuilleumier-Wärmepumpe zur dezentralen Hausenergieversorgung. Ph. D. thesis, Chair of Thermodynamics, University of Dortmund (2012)Google Scholar
  18. 18.
    Geue, I., Pfeiffer, J., Kühl, H.-D.: Laboratory-scale Stirling-Vuilleumier hybrid system part I: application of similarity-based design. J. Propul. Power 29(4), 800–811 (2013). ISSN 0748-4658CrossRefGoogle Scholar
  19. 19.
    Geue, I., Pfeiffer, J., Kühl, H.-D.: Laboratory-scale Stirling-Vuilleumier hybrid system part II: experimental results. J. Propul. Power 29(4), 812–824 (2013). ISSN 0748-4658CrossRefGoogle Scholar
  20. 20.
    Geue, I.,Kühl, H.-D.: Design of a convertible Stirling – Vuilleumier hybrid system for demand-oriented decentralized cogeneration and heat pump application. In: Proceedings of the International Stirling Forum, Osnabrück, p. 10 (2008). ISBN 3-9808409-4-8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.TU Dortmund UniversityDortmundGermany

Personalised recommendations