Advertisement

Design of a Thermoelectric Generator for Heavy-Duty Vehicles: Approach Based on WHVC and Real Driving Vehicle Boundary Conditions

  • Lars HeberEmail author
  • Julian Schwab
  • Horst E. Friedrich
Conference paper

Abstract

Fuel consumption and the CO2 emissions of heavy-duty vehicles are responsible for a great share of the road transport sector and substantial improvements are unlikely without further innovations. One part of this problem is that approximately Open image in new window of the fuel’s chemical energy is lost in waste heat through the engine’s coolant and exhaust system. Heavy-duty vehicles are expected to continue using internal combustion engines; a waste heat recovery system provides a future potential to reduce the fuel consumption and the emissions. Thermoelectric generators offer a low complexity solution. Based on the Seebeck effect, they convert thermal energy directly into electricity. Installed in the exhaust system of a vehicle, the system can supply the vehicles electrical system or charging the battery. Their benefits are low maintenance costs, relatively low system weight, small installation volume, and a competitive cost-benefit ratio. Recent research has focused on passenger cars but the potential for heavy-duty vehicles is high as well. Therefore, in this paper, the system development from potential analysis over design to experimental results, is presented for modern Euro VI heavy-duty vehicles with diesel and natural gas engines. The system integration is considered by analyzing installation positions in the exhaust aftertreatment system and its boundary conditions, such as available installation space and exhaust enthalpies for the most suitable positions. For this purpose, real road driving experimental data from long-haulage road circuit Stuttgart-Hamburg-Stuttgart and the representative World Harmonized Vehicle Cycle are presented as reference. Based on this data an approach for developing a thermoelectric generator system is investigated. The experimentally determined results of a hardware test and a simulation-based potential analysis are given for the vehicle interactions, the expected net electrical output power, and the reduced fuel consumption.

Keywords

Energy recovery Waste heat recovery system Thermoelectric generator Diesel heavy-duty vehicle 

Notes

Acknowledgments

This work was supported by the Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg, Germany in the form of the Project “HD-TEG: Thermoelectric Generators for Heavy-Duty Vehicles”. The authors would like to thank the local freight forwarder for its cooperation and its support, as well as the students Prinz, F. and Böhmer, A.-K. for their contributions within this work.

References

  1. 1.
    Eurostat, European statistics. http://ec.europa.eu/eurostat/data/database. Accessed 20 Aug 2018
  2. 2.
    Lastauto-Omnibus, various magazines, Vereinigte Motor-Verl., Stuttgart (1963–2018)Google Scholar
  3. 3.
    Pasini, G., Lutzemberger, G., Frigo, S.: Evaluation of an electric turbo compound system for SI engines: a numerical approach. Appl. Energy 162, 527–540 (2016)CrossRefGoogle Scholar
  4. 4.
    Heber, L., Vale, S., Friedrich, H.E.: Preliminary investigations for a thermoelectric generator as an alternative energy converter for commercial vehicles. In: Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER) 2016. IEEE (2016)Google Scholar
  5. 5.
    Heber, L.: Thermoelectric generators for heavy-duty vehicles: a systemic approach and development. In: ICT/ECT-2018 (2018)Google Scholar
  6. 6.
    Daccord, R.: Cost to benefit ratio of an exhaust heat recovery system on a long haul truck. Energy Procedia 129, 740–745 (2017)CrossRefGoogle Scholar
  7. 7.
    Glensvig, M.: Abwärmenutzung für Nutzfahrzeuge: Herausforderungen und Ergebnisse von Fahrzeugversuchen, AVL List GmbH, 3. VDI Fachkonferenz, Stuttgart (2017)Google Scholar
  8. 8.
    Meszler, D., Delgado, O., Rodriguez, F. et al.: European heavy-duty vehicles - cost effectiveness of fuel efficiency technologies for longhaul tractor-trailers in the 2025–2030 time-frame (2018)Google Scholar
  9. 9.
    BorgWarner Electric Boosting Technologies: eTurbocompound. http://www.borgwarner.com/technologies/electric-boosting-technologies. Accessed 22 Aug 2018
  10. 10.
    Vale, S., Heber, L., Coelho, P.J.: Parametric study of a thermoelectric generator system for exhaust gas energy recovery in diesel road freight transportation. Energy Convers. Manag. 133, 167–177 (2017)CrossRefGoogle Scholar
  11. 11.
    Dold, R., Oelschlegel, H.J., Gürlich, C. et al.: Verbundprojekt EHR - Abgaswärmenutzung für schwere On- und Non-Road-Fahrzeuge: Teilvorhaben Daimler: Entwicklung, Bau und Validierung eines Systems für schwere Nutzfahrzeuge, Verbundprojekt EHR - Abgaswärmenutzung für schwere On- und Non-Road-Fahrzeuge, Schlussbericht : Laufzeit des Vorhabens: 10 2011–12 2014. Daimler AG, Stuttgart (2014)Google Scholar
  12. 12.
    Openroute Service: Leaflet/Map data OpenStreetMap contributors. http://maps.openrouteservice.org/. Accessed 17 Aug 2018
  13. 13.
    Dittler, A., Zimmermann, F., Gärtner, U.: Welchen Beitrag leistet die Abgasnachbehandlung zur CO\(_{2}\) Reduktion? (2014)Google Scholar
  14. 14.
    Rowe, D.M. (ed.): Thermoelectrics Handbook: Macro to Nano. CRC/Taylor & Francis, Boca Raton (2006)Google Scholar
  15. 15.
    Bundesverband Güterkraftverkehr Logistik und Entsorgung (BGL) e.V., http://www.bgl-ev.de/web/der-bgl/informationen.htm. Additional information on the cost development calculator, Accessed 17 Aug 2018
  16. 16.
    Wittenbrink, P.: Transportmanagement: Kostenoptimierung, Green Logistics und Herausforderungen an der Schnittstelle Rampe, 2nd edn. Springer Gabler, Wiesbaden (2014)Google Scholar
  17. 17.
    Barwig, U., Hartmann, H.: Kosten- und Leistungsrechnung in der Spedition: Grundlagen und praktische Anwendungen. Oldenbourg Verlag, Munich (2013)CrossRefGoogle Scholar
  18. 18.
    BVU Beratergruppe Verkehr + Umwelt GmbH (BVU), TNS Infratest GmbH: Entwicklung eines Modells zur Berechnung von modalen Verlagerungen im Güterverkehr für die Ableitung konsistenter Bewertungsansätze für die Bundesverkehrswegeplanung, final report, Freiburg/München (2014)Google Scholar
  19. 19.
    Thermalforce.de: TEG data sheet No. TEG 070-600-6. Accessed 22 Aug 2018Google Scholar
  20. 20.
    Risseh, A.E., Nee, H.-P., Erlandsson, O. et al.: Design of a thermoelectric generator for waste heat recovery application on a drivable heavy duty vehicle. SAE Int. J. Commer. Veh. 10(1) (2017)CrossRefGoogle Scholar
  21. 21.
    Hervás-Blasco, E., Navarro-Peris, E., de Rosa, M.: Potential fuel saving in a powertrain derived from the recovery of the main energy losses for a long haul European mission. Energy Convers. Manage. 150, 485–499 (2017)CrossRefGoogle Scholar
  22. 22.
    Mayer, A.: Number-based emission limits, VERT-DPF-verification procedure and experience with 8000 retrofits, VERT, Switzerland (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.German Aerospace Center - Deutsches Zentrum für Luft- und Raumfahrt (DLR)Institute of Vehicle ConceptsStuttgartGermany

Personalised recommendations