Simulative Investigation of the Influence of a Rankine Cycle Based Waste Heat Utilization System on Fuel Consumption and Emissions for Heavy Duty Utility Vehicles

  • Kangyi YangEmail author
  • Michael Grill
  • Michael Bargende
Conference paper


As a promising solution to improve fuel efficiency of a long-haul heavy duty truck with diesel engine, Organic Rankine Cycle (ORC) based waste heat recovery system (WHR) by utilizing the exhaust gas from internal combustion engine has continuously drawn attention from industry in recent years. In this paper, a simulation study has been conducted to investigate the interaction between the internal combustion engine and an ORC based WHR-system with a parallel layout. The exhaust gas recirculation (EGR) energy and the exhaust gas Tailpipe (EGT) energy from the internal combustion engine will be used to vaporize the working fluid of the ORC-WHR system and converted to mechanical energy by employing a turbine-expander which is coupled to engine crankshaft. The truck cooling system will be used to dissipate the rest heat from the condenser of WHR-System to the ambient. The shift of the engine operating point to a lower engine torque level and the changed engine operating conditions by applying the WHR system have a strong influence on the benefit of the fuel efficiency and on the engine emission as well.

This paper aims to evaluate the impacts of the varied engine applications considering the effects of the WHR system on the global efficiency and engine emissions. A complex 0D/1D-simulation model for a turbocharged production 6-cylinder EURO-VI heavy duty engine with low-/high-temperature cooling circuit and a WHR system with ethanol as working fluid have been established in a conventional 1D-simulation software.


Organic Rankine Cycle Heavy duty vehicle Simulation 

Nomenclature, Definitions and Abbreviations


Convective heat transfer coefficient


Bottom dead centre


Brake specific fuel consumption

\( \varvec{c}_{{\varvec{p},\varvec{exh}}} \)

Specific heat capacity of exhaust gas


For example


Exhaust gas recirculation


Exhaust gas tailpipe

\( {\varvec{\upeta}}_{{{\mathbf{Carnot}}}} \)

Carnot efficiency

\( {\varvec{\upeta}}_{{{\mathbf{tri}}}} \)

Triangular coefficient

\( {\varvec{\upeta}}_{{\mathbf{v}}} \)

Pump efficiency


Global Warming Potential


High temperature coolant circuit


Low pressure charge air cooler


Low temperature coolant circuit

\( \dot{\varvec{m}}_{{\varvec{exh}}} \)

Mass flow of exhaust gas

\( {\mathbf{n}} \)

Pump speed


Not available


Nitrogen Oxides


Ozone depletion potential


Organic Rankine cycle


Proportional-integral-derivative controller


Pinch point temperature difference


Prandtl number


Reynolds number


Heat sink temperature


Heat source temperature

\( {\dot{\mathbf{V}}} \)

Pump volumetric flow

\( {\mathbf{V}}_{{\mathbf{D}}} \)

Pump displacement


World Harmonized Stationary Cycle


World Harmonized Transient Cycle



The research project was funded by BMWi (German Federal Ministry of Economic Affairs and Energy), due to a decision of the German Bundestag. The authors would like to thank the BMWi for providing financing.


  1. 1.
    European Commission - Climate action: Commission sets out strategy to curb CO2 emissions from trucks, buses and coaches, Press release IP/14/576, 21 May 2014Google Scholar
  2. 2.
    Ziviani, D., Beyene, A., Venturini, M.: Advances and challenges in ORC systems modeling for low grade thermal energy recovery. Appl. Energy 121, 79–95 (2014)CrossRefGoogle Scholar
  3. 3.
    Preißinger, M., Schwöbel, J.: Design, production and testing of an ideal rankine-fluid of the waste heat recovery for the mobile using, Universtät Bayreuth, FVV. Vorhaben Nr.1155, July 2015Google Scholar
  4. 4.
    Grill, M., Chiodi, M., Berner, H.-J., Bargende, M.: Berechnung der thermodynamischen stoffwerte von rauchgas und kraftstoffdampf beliebiger kraftstoffe. Motortechnische Z. 68, 398 (2007)CrossRefGoogle Scholar
  5. 5.
    Kozuch, P., Maderthaner, K., Grill, M., Schmid, A.: Simulation der Verbrennung und Schadstoffbildung bei schweren Nutzfahrzeugmotoren, Daimler AG Symposium Verbrennungsdiagnostig, Baden-Baden (2010)Google Scholar
  6. 6.
    Grill, M., Rether, D., Schmid, A., Bargende, M.: Quasidimensionale Simulation der Dieselverbrennung mit Vor- und Nacheinspritzungen. Motortechnische Zeitschrift 71, 742–748 (2010)CrossRefGoogle Scholar
  7. 7.
    Bargende, M., Grill, M.: Zukunft der Motorprozessrechnung und 1D-Simulation. Motortechnische Zeitschrift 75, 108–113 (2014). JubiläumsausgabeCrossRefGoogle Scholar
  8. 8.
    Kaal, B., Grill, M., Bargende, M.: Transient Simulation of Nitrogen Oxide Emissions of CI Engines, SAE Technical Paper 2016-01-1002 (2016).
  9. 9.
    Kožuch, P., Grill, M., Bargende, M.: Ein neuer Ansatz zur kombinierten Stickoxid-und Rußberechnung bei DI-Dieselmotoren (2004)Google Scholar
  10. 10.
    Töpfer, T., Dingel, O., Friedrich, I., Seebode, J.: Nutzung von Streckeninformationen für eine prädiktive ORC-Regelung Nutzung von Streckeninformationen für eine prädiktive ORC-Regelung. MTZ extra, November 2015Google Scholar
  11. 11.
    Reference Fluid Thermodynamic and transport properties Database (REFPROP), National Institute of Standards and Technology (NIST) version 9.0. (2016)Google Scholar
  12. 12.
    Yang, F., Zhang, H., Bei, C., Song, S.: Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin-and tube evaporator, College of Environmental and Energy Engineering, Beijing University of Technology, 04 September 2015Google Scholar
  13. 13.
    Li, Y.R., Du, M.T., Wu, C.M., Wu, S.Y.: Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery. Energy 77, 509–519 (2014)CrossRefGoogle Scholar
  14. 14.
    Walraven, D., Laenen, B., D’haeseleer, W.: Economic system optimization of air cooled organic Rankine cycles powered by low-temperature geothermal heat sources. Energy 80, 104–113 (2015)CrossRefGoogle Scholar
  15. 15.
    Vetter, C.: Thermodynamische Auslegung und transiente Simulation eines überkritischen Organic Rankine Cycles für einen leistungsoptimierten Betrieb, Dissertation, Karlsruher Institut für Technologie (KIT) (2014)Google Scholar
  16. 16.
    Seume, J., Peters, M., Kunte, H.: Design and test of a 10kW ORC supersonic turbine generator, Institute of Turbomachinery and Fluid Dynamics, Leibniz Universitaet Hannover, January 2017Google Scholar
  17. 17.
    Horst, T.: Betrieb eines Rankine-Prozesses zur Abgaswärmenutzung im PKW, Dissertation, Technische Universitaet Braunschweig (2015)Google Scholar
  18. 18.
    Gamma Technology, “Air Conditioning and Waste Heat Recovery” Tutorials (2017)Google Scholar
  19. 19.
    Di Battista, D., Mauriello, M., Cipollone, R.: Effects of an ORC based heat recovery system on the performances of a diesel engine, SAE technical paper 2015-01-1608 (2015).
  20. 20.
    Mondt, J.R.: Cleaner cars: The history and technology of emission control since the 1960s. SAE International (2000). ISBN: 0768002222Google Scholar
  21. 21.
    Mazar, B.: Gesamtsystemoptimierung eines thermoelektrischen Generators für eine Fahrzeuggruppe, (Dissertation), University of Dresden, Germany (2010)Google Scholar
  22. 22.
    Fischer, G.: Expertenmodell zur Berechnung der Reibungsverluste von Ottomotoren, Dissertation TU Darmstadt (2000)Google Scholar
  23. 23.
    Yang, K., Grill, M.: A Simulation Study of Optimal Integration of a Rankine Cycle Based Waste Heat Recovery System into the Cooling System of a Long-Haul Heavy Duty Truck, SAE Technical Paper 2018-01-1779 (2018).
  24. 24.
    Jung, M.: Auslegung eines Clausius-Rankine-Zyklus mit Kolbenexpansionsmaschine für die Anwendung im schweren Nutzfahrzeug, Dissertation, Ruhr-Universität Bochum (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart - FKFSStuttgartGermany
  2. 2.Institut für Verbrennungsmotoren und KraftfahrwesenStuttgartGermany

Personalised recommendations