Advertisement

Choice of Energetically Optimal Operating Points in Thermal Management of Electric Drivetrain Components

  • Carsten WulffEmail author
  • Patrick Manns
  • David Hemkemeyer
  • Daniel Perak
  • Klaus Wolff
  • Stefan Pischinger
Conference paper

Abstract

Increasing the efficiency of electric vehicles is a development focus in the automotive industry in order to reach the range targets set by customer requirements. Thermal management can have a positive effect on the system efficiency of electric vehicles. In this contribution, a simulation model of the drivetrain and cooling system of an electric vehicle has been build up. The aim is to investigate the influence of the cooling system control and resulting component temperatures on the drivetrain efficiency. Thus, energetically optimal target temperatures for inverter and motor can be identified and implemented in the cooling system control.

This approach goes beyond the state of the art control strategy of keeping the temperatures under the component protection threshold. Related research suggests that the component efficiency of inverter and motor can be increased by reducing their operation temperature. The simulation results in this article show that choosing target temperatures for inverter and motor below the components’ safety limit can have a small, positive impact on the system efficiency of the electric vehicle.

As the model is yet to be validated, these results implicate that the optimal component target temperatures for inverter and motor regarding system efficiency are below the protective limit. As a next step, the model will be validated with comprehensive component and vehicle measurement data in order to give a quantitative statement on the possible benefits of optimized thermal management control.

Keywords

Electric vehicles Thermal management Optimal control 

Notes

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG) – GRK1856.

References

  1. 1.
    Kampker, A., Vallée, D., Schnettler, A. (eds.): Elektromobilität. Grundlagen einer Zukunftstechnologie. 1st edn. Springer Vieweg, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-31986-0Google Scholar
  2. 2.
    Hemkemeyer, D.: Thermomanagement im elektrischen Personenkraftwagen unter Nutzung der Abwärme des Antriebs. PhD-thesis, Aachen (2017)Google Scholar
  3. 3.
    Pischinger, S., Seiffert, U. (eds.): Vieweg Handbuch Kraftfahrzeugtechnik. 8th edn. Springer Vieweg, Wiesbaden (2016).  https://doi.org/10.1007/978-3-658-09528-4Google Scholar
  4. 4.
    Eckstein, L.: Längsdynamik von Kraftfahrzeugen. 4th edn. Forschungsgesellschaft Kraftfahrwesen, Aachen (2011)Google Scholar
  5. 5.
    Serghides, T.K.: Estimate Friction Factor Accurately. Chem. Eng. 91, 63–64 (1984)Google Scholar
  6. 6.
    VDI Heat Atlas. 2nd edn. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Feix, G., Dieckerhoff, S., Allmeling, J., Schonberger, J.: Simple methods to calculate IGBT and diode conduction and switching losses. In: 13th European Conference on Power Electronics and Applications 2009, pp. 1–8. Barcelona (2009)Google Scholar
  8. 8.
    Schützhold, J., Hofmann, W.: Analysis of the temperature dependence of losses in electrical machines. In: IEEE Energy Conversion Congress and Exposition, pp. 3159–3165. Denver (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carsten Wulff
    • 1
    Email author
  • Patrick Manns
    • 2
  • David Hemkemeyer
    • 2
  • Daniel Perak
    • 2
  • Klaus Wolff
    • 2
  • Stefan Pischinger
    • 1
  1. 1.RWTH Aachen University, Institute for Combustion EnginesAachenGermany
  2. 2.FEV Europe GmbHAachenGermany

Personalised recommendations