Advertisement

Purinergic Signaling at Tripartite Synapses

  • Anup PillaiEmail author
  • Suhita NadkarniEmail author
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)

Abstract

Astrocytes modulate synaptic transmission and plasticity via the release of gliotransmitters. ATP release by astrocytes and its chief metabolite, adenosine mediate astrocyte-neuron crosstalk through a plethora of ionotropic and metabotropic purinergic receptors and provide a unique framework that enables bidirectional modulation of neuronal excitability over a range of spatial and temporal scales. More recently dysregulation in purinergic signaling has also been associated with several disorders. The complexity of purinergic signaling and overlapping signaling pathways used by astrocytes and neurons makes it difficult to quantify the precise contribution of astrocytic release to function and yet provide a fertile ground for computational and modeling approaches. Here we review seminal experimental evidence on feedback and feedforward regulation of neuronal activity by astrocytes by means of purinergic signaling and pinpoint the essential requirements for a modeling framework to study this signaling at tripartite synapses. The ultimate goal would be to quantify the diverse functions of purinergic transmission stemming from a large variety of receptor type and spatiotemporal landscape.

Keywords

ATP Purinergic receptors Gliotransmitter release Adenosine Calcium signaling 

References

  1. Abbracchio MP (2006) International Union of Pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abbracchio MP, Ceruti S (2006) Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Sig 2:595–604CrossRefGoogle Scholar
  3. Alloisio S, Cervetto C, Passalacqua M, Barbieri R, Maura G, Nobile M, Marcoli M (2008) Functional evidence for presynaptic P2X7 receptors in adult rat cerebrocortical nerve terminals. FEBS Lett 582:3948–3953PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ambrósio AF, Malva JO, Carvalho AP, Carvalho CM (1997) Inhibition of N-, P/Q- and other types of Ca2+ channels in rat hippocampal nerve terminals by the adenosine A1 receptor. Eur J Pharmacol 340:301–310PubMedCrossRefPubMedCentralGoogle Scholar
  5. Amiri M, Hosseinmardi N, Bahrami F, Janahmadi M (2013) Astrocyte–neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. J Comput Neurosci 34:489–504PubMedCrossRefPubMedCentralGoogle Scholar
  6. Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from astrocytes. J Neurosci 20:666–673PubMedCrossRefPubMedCentralGoogle Scholar
  7. Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81:728–739PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bacaj T, Wu D, Yang X, Morishita W, Zhou P, Xu W, Malenka RC, Südhof TC (2013) Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron 80:947–959PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bellinger S (2005) Modeling calcium wave oscillations in astrocytes. Neurocomputing 65(66):843–850CrossRefGoogle Scholar
  10. Bennett MR, Farnell L, Gibson WG (2005) A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys J 89:2235–2250PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620PubMedCrossRefGoogle Scholar
  12. Bo X (2003) Pharmacological and biophysical properties of the human P2X5 receptor. Mol Pharmacol 63:1407–1416PubMedCrossRefPubMedCentralGoogle Scholar
  13. Boitano S, Dirksen ER, Sanderson MJ (1992) Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258:292–295PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bollmann JH (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289:953–957PubMedCrossRefGoogle Scholar
  15. Bowser DN, Khakh BS (2007a) Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 129:485–491PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bowser DN, Khakh BS (2007b) Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci 104:4212–4217PubMedCrossRefPubMedCentralGoogle Scholar
  17. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797PubMedCrossRefPubMedCentralGoogle Scholar
  18. Calì C, Marchaland J, Regazzi R, Bezzi P (2008) SDF 1-alpha (CXCL12) triggers glutamate exocytosis from astrocytes on a millisecond time scale: imaging analysis at the single-vesicle level with TIRF microscopy. J Neuroimmunol 198:82–91PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cass CE, Young JD, Baldwin SA (1998) Recent advances in the molecular biology of nucleoside transporters of mammalian cells. Biochem Cell Biol 76:761–770PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chandaka GK, Drobny H, Boehm S (2008) Facilitation of transmitter release from rat sympathetic neurons via presynaptic P2Y1 receptors. BMC Pharmacol 8:A8PubMedCentralCrossRefGoogle Scholar
  21. Chen X (2005) “Kiss-and-run” glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 25:9236–9243PubMedCrossRefGoogle Scholar
  22. Chen X-K (2006) “Kiss-and-run” exocytosis in astrocytes. Neurosci 12:375–378Google Scholar
  23. Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473PubMedCrossRefPubMedCentralGoogle Scholar
  25. Crippa D, Schenk U, Francolini M, Rosa P, Verderio C, Zonta M, Pozzan T, Matteoli M, Carmignoto G (2006) Synaptobrevin2-expressing vesicles in rat astrocytes: Insights into molecular characterization, dynamics and exocytosis. J Physiol 570:567–582PubMedCrossRefGoogle Scholar
  26. Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: Different roles, different sources and different receptors. Neurochem Int 38:107–125PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cunha RA (2008) Different cellular sources and different roles of adenosine: A1 receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted A2A receptor-mediated facilitation of plasticity. Neurochem Int 52:65–72PubMedCrossRefPubMedCentralGoogle Scholar
  28. Dani JW, Chernavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocytic networks. Neuron 8:429–440PubMedCrossRefPubMedCentralGoogle Scholar
  29. De Pittà M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 6:98PubMedPubMedCentralCrossRefGoogle Scholar
  30. Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, Buckley NJ, Parson SH, Deuchars J (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 21:7143–7152PubMedCrossRefPubMedCentralGoogle Scholar
  31. Ding S, Sachs F (1999) Single channel properties of P2X2 purinoceptors. J Gen Physiol 113:695–720PubMedPubMedCentralCrossRefGoogle Scholar
  32. Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-σ and prostaglandins. J Biol Chem 281:30684–30696PubMedCrossRefPubMedCentralGoogle Scholar
  33. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237PubMedPubMedCentralCrossRefGoogle Scholar
  34. Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dunwiddie TV, Diao L, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17:7673–7682PubMedCrossRefPubMedCentralGoogle Scholar
  37. Edwards JR, Gibson WG (2010) A model for Ca2+ waves in networks of glial cells incorporating both intercellular and extracellular communication pathways. J Theor Biol 263:45–58PubMedCrossRefPubMedCentralGoogle Scholar
  38. Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147PubMedCrossRefPubMedCentralGoogle Scholar
  39. Egan TM, Khakh BS (2004) Contribution of calcium ions to P2X channel responses. J Neurosci 24:3413–3420PubMedCrossRefPubMedCentralGoogle Scholar
  40. Egan TM, Samways DSK, Li Z (2006) Biophysics of P2X receptors. Pflugers Arch Eur J Physiol 452:501–512CrossRefGoogle Scholar
  41. Evanko DS, Zhang Q, Zorec R, Haydon PG (2004) Defining pathways of loss and secretion of chemical messengers from astrocytes. Glia 47:233–240PubMedCrossRefPubMedCentralGoogle Scholar
  42. Evans RJ, Derkach V, Surprenant A (1992) ATP mediates fast synaptic transmission in mammalian neurons. Nature 357:503–505PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fellin T (2006) Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21:208–215PubMedCrossRefPubMedCentralGoogle Scholar
  44. Fields RD, Burnstock G (2006) Purinergic signalling in neuron–glia interactions. Nat Rev Neurosci 7:423–436PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270PubMedCrossRefPubMedCentralGoogle Scholar
  46. Giaume C, Leybaert L, Naus CC, Sáez JC (2013) Connexin and pannexin hemichannels in brain glial cells: Properties, pharmacology, and roles. Front Pharmacol 4(JUL):1–17Google Scholar
  47. Gordon GRJ, Baimoukhametova DV, Hewitt SA, Rajapaksha WRAKJS, Fisher TE, Bains JS (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8:1078–1086PubMedCrossRefPubMedCentralGoogle Scholar
  48. Gordon GRJ, Iremonger KJ, Kantevari S, Ellis-Davies GCR, MacVicar BA, Bains JS (2009) Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64:391–403PubMedPubMedCentralCrossRefGoogle Scholar
  49. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238PubMedCrossRefPubMedCentralGoogle Scholar
  51. Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22:4850–4859PubMedCrossRefGoogle Scholar
  52. Holton P (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol 145:494–504PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hua X, Malarkey EB, Sunjara V, Rosenwald SE, Li WH, Parpura V (2004) Ca2+-dependent glutamate release involves two classes of endoplasmic reticulum Ca2+ stores in astrocytes. J Neurosci Res 76:86–97PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hulme SR, Jones OD, Raymond CR, Sah P, Abraham WC (2014) Mechanisms of heterosynaptic metaplasticity. Philos Trans R Soc Lond B Biol Sci 369:20130148PubMedPubMedCentralCrossRefGoogle Scholar
  55. Iacobas DA, Suadicani SO, Spray DC, Scemes E (2006) A stochastic two-dimensional model of intercellular Ca2+ wave spread in glia. Biophys J 90:24–41PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kang M, Othmer HG (2009) Spatiotemporal characteristics of calcium dynamics in astrocytes. Chaos 19Google Scholar
  59. Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174PubMedCrossRefPubMedCentralGoogle Scholar
  60. Khakh BS (2009) ATP-gated P2X receptors on excitatory nerve terminals onto interneurons initiate a form of asynchronous glutamate release. Neuropharmacology 56:216–222PubMedCrossRefPubMedCentralGoogle Scholar
  61. Köles L, Leichsenring A, Rubini P, Illes P (2011) P2 receptor signaling in neurons and glial cells of the central nervous system. Adv Pharmacol 61, 441–493Google Scholar
  62. Kreft M, Stenovec M, Rupnik M, Grilc S, Kržan M, Potokar M, Pangršič T, Haydon PG, Zorec R (2004) Properties of Ca2+-dependent exocytosis in cultured astrocytes. Glia 46:437–445PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kreft M, Potokar M, Stenovec M, Pangršič T, Zorec R (2009) Regulated exocytosis and vesicle trafficking in astrocytes. Ann N Y Acad Sci 1152:30–42PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kukley M, Barden JA, Steinhäuser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11–21PubMedCrossRefPubMedCentralGoogle Scholar
  65. Lalo UV, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12Google Scholar
  66. Lê KT, Babinski K, Séguéla P (1998) Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 18:7152–7159PubMedCrossRefPubMedCentralGoogle Scholar
  67. Li B, Chen S, Zeng S, Luo Q, Li P (2012) Modeling the contributions of Ca2+ flows to spontaneous Ca2+ oscillations and cortical spreading depression-triggered Ca2+ waves in astrocyte networks. PLoS ONE 7:1–12Google Scholar
  68. Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JA (2002) Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience 112:319–329PubMedCrossRefPubMedCentralGoogle Scholar
  69. Macdonald CL, Yu D, Buibas M, Silva GA (2008) Diffusion modeling of ATP signaling suggests a partially regenerative mechanism underlies astrocyte intercellular calcium waves. Front Neuroeng 1:1PubMedPubMedCentralCrossRefGoogle Scholar
  70. Maienschein V, Marxen M, Volknandt W, Zemmermann H (1999) A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26:233–244PubMedCrossRefPubMedCentralGoogle Scholar
  71. Malarkey EB, Parpura V (2011) Temporal characteristics of vesicular fusion in astrocytes: Examination of synaptobrevin 2-laden vesicles at single vesicle resolution. J Physiol 589:4271–4300PubMedPubMedCentralCrossRefGoogle Scholar
  72. Marchaland J, Cali C, Voglmaier SM, Li H, Regazzi R, Edwards RH, Bezzi P (2008) Fast subplasma membrane Ca2+ transients control exo-endocytosis of synaptic-like microvesicles in astrocytes. J Neurosci 28:9122–9132PubMedPubMedCentralCrossRefGoogle Scholar
  73. Moffatt L, Hume RI (2007) Responses of rat P2X2 receptors to ultrashort pulses of ATP provide insights into ATP binding and channel gating. J Gen Physiol 130:183–201PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4Google Scholar
  75. Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21:2215–2223PubMedPubMedCentralCrossRefGoogle Scholar
  76. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067PubMedCrossRefPubMedCentralGoogle Scholar
  77. Oya M, Kitaguchi T, Yanagihara Y, Numano R, Kakeyama M, Ikematsu K, Tsuboi T (2013) Vesicular nucleotide transporter is involved in ATP storage of secretory lysosomes in astrocytes. Biochem Biophys Res Commun 438:145–151PubMedCrossRefPubMedCentralGoogle Scholar
  78. Pang ZP, Südhof TC (2010) Cell biology of Ca2+-triggered exocytosis. Curr Opin Cell Biol 22:496–505PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pangršič T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L, Giniatullin R, Zorec R (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758PubMedCrossRefPubMedCentralGoogle Scholar
  80. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci U S A 97:8629–8634PubMedPubMedCentralCrossRefGoogle Scholar
  81. Parpura V, Fang Y, Basarsky T, Jahn R, Haydon PG (1995) Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377:489–492PubMedCrossRefPubMedCentralGoogle Scholar
  82. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul J-Y, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116PubMedCrossRefPubMedCentralGoogle Scholar
  83. Pougnet JT, Toulme E, Martinez A, Choquet D, Hosy E, Boué-Grabot E (2014) ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons. Neuron 83:417–430PubMedCrossRefPubMedCentralGoogle Scholar
  84. Proctor WR, Dunwiddie TV (1987) Pre- and postsynaptic actions of adenosine in the in vitro rat hippocampus. Brain Res 426:187–190PubMedCrossRefPubMedCentralGoogle Scholar
  85. Rebola N, Rodrigues RJ, Lopes LV, Richardson PJ, Oliveira CR, Cunha RA (2005) Adenosine A1 and A2A receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience 133:79–83PubMedCrossRefPubMedCentralGoogle Scholar
  86. Robinson IM, Ranjan R, Schwarz TL (2002) Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature 418:336–340PubMedCrossRefPubMedCentralGoogle Scholar
  87. Rubio ME, Soto F (2001) Distinct localization of P2X receptors at excitatory postsynaptic specializations. J Neurosci 21:641–653PubMedCrossRefPubMedCentralGoogle Scholar
  88. Sahlender DA, Savtchouk I, Volterra A (2014) What do we know about gliotransmitter release from astrocytes? Philos Trans R Soc Lond B Biol Sci 369:20130592PubMedPubMedCentralCrossRefGoogle Scholar
  89. Salter MW, Hicks JL (1995) ATP causes release of intracellular Ca2+ via the phospholipase C beta/IP3 pathway in astrocytes from the dorsal spinal cord. J Neurosci 15:2961–2971PubMedCrossRefPubMedCentralGoogle Scholar
  90. Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A, Moriyama Y (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci USA 105:5683–5686PubMedCrossRefPubMedCentralGoogle Scholar
  91. Scanziani M, Capogna M, Gähwiler BH, Thompson SM (1992) Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus. Neuron 9:919–927PubMedCrossRefPubMedCentralGoogle Scholar
  92. Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406:889–893PubMedCrossRefGoogle Scholar
  93. Singh P, Jorgačevski J, Kreft M, Grubišić V, Stout RF, Potokar M, Parpura V, Zorec R (2014) Single-vesicle architecture of synaptobrevin2 in astrocytes. Nat Commun 5:3780PubMedPubMedCentralCrossRefGoogle Scholar
  94. Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Hollmann M, Karschin C, Stühmer W (1996) P2X4: An ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci USA 93:3684–3688PubMedCrossRefPubMedCentralGoogle Scholar
  95. Stamatakis M, Mantzaris NV (2006) Modeling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks. J Theor Biol 241:649–668PubMedCrossRefPubMedCentralGoogle Scholar
  96. Sudhof TC, Rothman JE (2009) Membrane fusion: Grappling with SNARE and SM proteins. Science 323:474–477PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sun J, Pang ZP, Qin D, Fahim AT, Adachi R, Sudhof TC (2007) A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450:676–682PubMedPubMedCentralCrossRefGoogle Scholar
  98. Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359PubMedCrossRefPubMedCentralGoogle Scholar
  99. Venance L, Stella N, Glowinski J, Giaume C (1997) Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J Neurosci 17:1981–1992PubMedCrossRefPubMedCentralGoogle Scholar
  100. Verderio C, Cagnoli C, Bergami M, Francolini M, Schenk U, Colombo A, Riganti L, Frassoni C, Zuccaro E, Danglot L, Wilhelm C, Galli T, Canossa M, Matteoli M (2012) TI-VAMP/VAMP7 is the SNARE of secretory lysosomes contributing to ATP secretion from astrocytes. Biol Cell 104:213–228PubMedCrossRefPubMedCentralGoogle Scholar
  101. Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca2+ signalling: An unexpected complexity. Nat Rev Neurosci 15:327–335PubMedCrossRefPubMedCentralGoogle Scholar
  102. Whitlock A, Burnstock G, Gibb AJ (2001) The single-channel properties of purinergic P2X ATP receptors in outside-out patches from rat hypothalamic paraventricular parvocells. Pflugers Arch Eur J Physiol 443:115–122CrossRefGoogle Scholar
  103. Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982PubMedCrossRefPubMedCentralGoogle Scholar
  104. Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004a) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101:9441–9446PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhang Q, Pangrsic T, Kreft M, Krzan M, Li N, Sul J-Y, Halassa M, Van Bockstaele E, Zorec R, Haydon PG (2004b) Fusion-related release of glutamate from astrocytes. J Biol Chem 279:12724–12733PubMedCrossRefPubMedCentralGoogle Scholar
  106. Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu X, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9:945–953PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Indian Institute of Science Education and ResearchPuneIndia

Personalised recommendations