Computational Glioscience pp 177-210 | Cite as

# Astrocyte Networks and Intercellular Calcium Propagation

## Abstract

Astrocytes organize in complex networks through connections by gap junction channels that are regulated by extra- and intracellular signals. Calcium signals generated in individual cells can propagate across these networks in the form of intercellular calcium waves, mediated by diffusion of second messengers molecules such as inositol 1,4,5-trisphosphate. The mechanisms underpinning the large variety of spatiotemporal patterns of propagation of astrocytic calcium waves, however, remains a matter of investigation. In the last decade, awareness has grown on the morphological diversity of astrocytes as well as their connections in networks, which seem dependent on the brain area, developmental stage, and the ultrastructure of the associated neuropile. It is speculated that this diversity underpins an equal functional variety, but the current experimental techniques are limited in supporting this hypothesis because they do not allow to resolve the exact connectivity of astrocyte networks in the brain. With this aim, we present a general framework to model intercellular calcium wave propagation in astrocyte networks and use it to specifically investigate how different network topologies could influence shape, frequency, and propagation of these waves.

## Keywords

Three-dimensional astrocyte networks Intercellular calcium waves Spatiotemporal IP\(_3\) dynamics Shell analysis## Notes

### Acknowledgements

MDP acknowledges the support of Pôle emploi Rhône-Alpes, the “Alain Bensoussan” Postdoctoral Fellowship Program by the European Research Council in Informatics and Mathematics (ERCIM), and the Junior Leader Postdoctoral Fellowship Program by “la Caixa” Banking Foundation (LCF/BQ/LI18/11630006). MDP’s research at BCAM is also made possible thanks to the support of the Basque Government by the BERC 2018–2021 program, as well as by the Spanish Ministry of Science, Innovation and Universities through the BCAM Severo Ochoa accreditation SEV-2017-0718.

## References

- Aberg ND, Rönnbäck L, Eriksson PS (1999) Connexin43 mRNA and protein expression during postnatal development of defined brain regions. Dev Brain Res 115(1):97–101CrossRefGoogle Scholar
- Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 260:107–260Google Scholar
- Bao X, Altenberg GA, Reuss L (2004) Mechanism of regulation of the gap junction protein connexin 43 by protein kinase C-mediated phosphorylation. Am J Physiol Cell Physiol 286(3):C647–C654PubMedCrossRefPubMedCentralGoogle Scholar
- Barthélemy M (2010) Spatial networks. Phys Rep 499:1–101CrossRefGoogle Scholar
- Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19(2):182–189PubMedPubMedCentralCrossRefGoogle Scholar
- Bennett M, Farnell L, Gibson W (2005) A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys. J 89(4):2235–2250PubMedPubMedCentralCrossRefGoogle Scholar
- Blomstrand F, Aberg ND, Eriksson PS, Hansson E, Rönnbäck L (1999) Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin-43 expression in astrocytes in primary cultures from four brain regions. Neuroscience 92(1):255–265PubMedCrossRefPubMedCentralGoogle Scholar
- Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308CrossRefGoogle Scholar
- Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192PubMedCrossRefPubMedCentralGoogle Scholar
- Charles A (1998) Intercellular calcium waves in glia. Glia 24(1):39–49PubMedCrossRefPubMedCentralGoogle Scholar
- Chay T, Fan YS, Lee SY (1995) Bursting, spiking, chaos, fractals and universality in biological rhythms. Int J Bifurcat Chaos 5:595–635CrossRefGoogle Scholar
- Clements JD, Lester RAJ, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501PubMedCrossRefPubMedCentralGoogle Scholar
- Codazzi F, Teruel MN, Meyer T (2001) Control of astrocyte Ca\(^{2+}\) oscillations and waves by oscillating translocation and activation of protein kinase C. Curr Biol 11(14):1089–1097PubMedCrossRefPubMedCentralGoogle Scholar
- Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473CrossRefPubMedPubMedCentralGoogle Scholar
- Crank J (1980) The mathematics of diffusion, 2nd edn. Oxford University Press, USAGoogle Scholar
- D’Ambrosio R, Wenzel J, Schwartzkroin PA, McKhann GM, Janigro D (1998) Functional specialization and topographic segregation of hippocampal astrocytes. J Neurosci 18(12):4425–4438PubMedPubMedCentralCrossRefGoogle Scholar
- Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8(3):429–440PubMedCrossRefPubMedCentralGoogle Scholar
- De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E (2009) Glutamate regulation of calcium and \(IP_3\) oscillating and pulsating dynamics in astrocytes. J Biol Phys 35(4):383–411PubMedPubMedCentralCrossRefGoogle Scholar
- De Pittà M, Volman V, Berry H, Parpura V, Liaudet N, Volterra A, Ben-Jacob E (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comp Neurosci 6:98Google Scholar
- De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca\(^{2+}\) concentration. Proc Natl Acad Sci 89(20):9895–9899PubMedCrossRefPubMedCentralGoogle Scholar
- Ding F, O’Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, Wang F, Nedergaard M (2013) \(\alpha \) 1-Adrenergic receptors mediate coordinated Ca\(^{2+}\) signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54(6):387–394PubMedCrossRefPubMedCentralGoogle Scholar
- Dokukina I, Gracheva M, Grachev E, Gunton J (2008) Role of network connectivity in intercellular calcium signaling. Physica D 237(6):745–754CrossRefGoogle Scholar
- Dupont G, Erneux C (1997) Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca\(^{2+}\) oscillations. Cell Calcium 22(5):321–331PubMedPubMedCentralCrossRefGoogle Scholar
- Dupont G, Goldbeter A (1993) One-pool model for Ca\(^{2+}\) oscillations involving Ca\(^{2+}\) and inositol 1,4,5-trisphosphate as co-agonists for Ca\(^{2+}\) release. Cell Calcium 14:311–322CrossRefGoogle Scholar
- Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97(2):1566–1587PubMedCrossRefPubMedCentralGoogle Scholar
- Edwards JR, Gibson WG (2010) A model for Ca\(^{2+}\) waves in networks of glial cells incorporating both intercellular and extracellular communication pathways. J Theor Biol 263(1):45–58PubMedPubMedCentralCrossRefGoogle Scholar
- Falcke M (2004) Reading the patterns in living cells: the physics of Ca\(^{2+}\) signaling. Adv Phys 53(3):255–440CrossRefGoogle Scholar
- Fiacco TA, McCarthy KD (2004) Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci 24(3):722–732PubMedCrossRefPubMedCentralGoogle Scholar
- Fiacco TA, McCarthy KD (2006) Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54(7):676–690PubMedCrossRefPubMedCentralGoogle Scholar
- Galea E, Morrison W, Hudry E, Arbel-Ornath M, Bacskai BJ, Gómez-Isla T, Stanley HE, Hyman BT (2015) Topological analyses in APP/PS1 mice reveal that astrocytes do not migrate to amyloid-\(\beta \) plaques. Proc Natl Acad Sci 112(51):15556–15561PubMedPubMedCentralGoogle Scholar
- Giaume C (2010) Astroglial wiring is adding complexity to neuroglial networking. Front Neuroenergetics 2:129PubMedPubMedCentralCrossRefGoogle Scholar
- Giaume C, Fromaget C, el Aoumari A, Cordier J, Glowinski J, Gros D (1991) Gap junctions in cultured astrocytes: single-channel currents and characterization of channel-forming protein. Neuron 6(1):133–143PubMedCrossRefPubMedCentralGoogle Scholar
- Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99PubMedCrossRefPubMedCentralGoogle Scholar
- Giaume C, McCarthy KD (1996) Control of gap-junctional communication in astrocytic networks. Trends Neurosci 19(8):319–325PubMedCrossRefPubMedCentralGoogle Scholar
- Goldberg M, De Pittà M, Volman V, Berry H, Ben-Jacob E (2010) Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput Biol 6(8):e1000909PubMedPubMedCentralCrossRefGoogle Scholar
- Golomb D, Hansel D (2000) The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Neural Comput 12(5):1095–1139PubMedCrossRefPubMedCentralGoogle Scholar
- Harris AL (2001) Emerging issues in connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472PubMedCrossRefPubMedCentralGoogle Scholar
- Höfer T, Politi A, Heinrich R (2001) Intercellular Ca\(^{2+}\) wave propagation through gap-junctional Ca\(^{2+}\) diffusion: a theoretical study. Biophys J 80(1):75–87PubMedPubMedCentralCrossRefGoogle Scholar
- Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22(12):4850–4859CrossRefGoogle Scholar
- Houades V, Koulakoff A, Ezan P, Seif I, Giaume C (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28(20):5207–5217PubMedCrossRefPubMedCentralGoogle Scholar
- Huang Y-F, Liao C-K, Lin J-C, Jow G-M, Wang H-S, Wu J-C (2013) Antofine-induced connexin43 gap junction disassembly in rat astrocytes involves protein kinase C\(\beta \). Neurotoxicology 35:169–179PubMedCrossRefPubMedCentralGoogle Scholar
- Iacobas DA, Suadicani SO, Spray DC, Scemes E (2006) A stochastic two-dimensional model of intercellular Ca\(^{2+}\) wave spread in glia. Biophys J 90(1):24–41PubMedPubMedCentralCrossRefGoogle Scholar
- Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2(5):327–338PubMedCrossRefPubMedCentralGoogle Scholar
- Iwabuchi S, Kawahara K, Makisaka K, Sato H (2002) Photolytic flash-induced intercellular calcium waves using caged calcium ionophore in cultured astrocytes from newborn rats. Exp Brain Res 146(1):103–116PubMedCrossRefPubMedCentralGoogle Scholar
- Kang M, Othmer HG (2009) Spatiotemporal characteristics of calcium dynamics in astrocytes. Chaos 19(3):037116PubMedPubMedCentralCrossRefGoogle Scholar
- Kasthuri N, Hayworth K, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, Vázquez-Reina A, Kaynig V, Jones TR, Roberts M, Lyskowski JM, Tapia JC, Seung HS, Roncal WG, Vogelstein JT, Burns R, Sussman DL, Priebe CE, Pfister H, Lichtman JW (2015) Saturated reconstruction of a volume of neocortex. Cell 162(3):648–661PubMedCrossRefPubMedCentralGoogle Scholar
- Koulakoff A, Ezan P, Giaume C (2008) Neurons control the expression of connexin 30 and connexin 43 in mouse cortical astrocytes. Glia 56(12):1299–1311PubMedCrossRefPubMedCentralGoogle Scholar
- Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323(5918):1211–1215PubMedPubMedCentralCrossRefGoogle Scholar
- Kuga N, Sasaki T, Takahara Y, Matsuki N, Ikegaya Y (2011) Large-scale calcium waves traveling through astrocytic networks in vivo. J Neurosci 31(7):2607–2614PubMedPubMedCentralCrossRefGoogle Scholar
- Kummer U, Olsen LF, Green AK, Bomberg-Bauer E, Baier G (2000) Switching from simple to complex oscillations in calcium signaling. Biophys J 79:1188–1199PubMedPubMedCentralCrossRefGoogle Scholar
- Kunze A, Congreso MR, Hartmann C, Wallraff-Beck A, Hüttmann K, Bedner P, Requardt R, Seifert G, Redecker C, Willecke K, Hofmann A, Pfeifer A, Theis M, Steinhäuser C (2009) Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 106(27):11336–11341PubMedCrossRefPubMedCentralGoogle Scholar
- Kupferman R, Mitra PP, Hohenberg PC, Wang SS (1997) Analytical calculation of intracellular calcium wave characteristics. Biophys J 72(6):2430–2444PubMedPubMedCentralCrossRefGoogle Scholar
- Kurth-Nelson ZL, Mishra A, Newman EA (2009) Spontaneous glial calcium waves in the retina develop over early adulthood. J Neurosci 29(36):11339–11346PubMedPubMedCentralCrossRefGoogle Scholar
- Lallouette J (2014) Modeling calcium responses in astrocyte networks: relationships between topology and dynamics. Ph.D. thesis, INSA de LyonGoogle Scholar
- Lallouette J, De Pittà M, Ben-Jacob E, Berry H (2014) Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks. Front Comput Neurosci 8:45Google Scholar
- Li Y, Rinzel J (1994) Equations for InsP\(_3\) receptor-mediated \([\text{Ca}^{2+}]_\text{ i }\) oscillations derived from a detailed kinetic model: a Hodgkin–Huxley like formalism. J Theor Biol 166(4):461–473Google Scholar
- Luccioli S, Olmi S, Politi A, Torcini A (2012) Collective dynamics in sparse networks. Phys Rev Lett 109(13):138103PubMedCrossRefPubMedCentralGoogle Scholar
- MacDonald CL, Yu D, Buibas M, Silva GA (2008) Diffusion modeling of atp signaling suggests a partially regenerative mechanism underlies astrocyte intercellular calcium waves. Front. Neuroeng 1:1PubMedPubMedCentralCrossRefGoogle Scholar
- Matrosov VV, Kazantsev VB (2011) Bifurcation mechanisms of regular and chaotic network signaling in brain astrocytes. Chaos 21(2):023103PubMedPubMedCentralCrossRefGoogle Scholar
- Montoro RJ, Yuste R (2004) Gap junctions in developing neocortex: a review. Brain Res. Rev. 47(1–3):216–226PubMedCrossRefPubMedCentralGoogle Scholar
- Müller-Linow M, Hilgetag CC, Hütt M-T (2008) Organization of excitable dynamics in hierarchical biological networks. PLoS Comput Biol 4(9):e1000190PubMedPubMedCentralCrossRefGoogle Scholar
- Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Rev 32(1):29–44PubMedCrossRefPubMedCentralGoogle Scholar
- Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530PubMedCrossRefPubMedCentralGoogle Scholar
- Newman MEJ (2003) The structure and function of complex networks. SIAM Rev. 45(2):167–256CrossRefGoogle Scholar
- Nimmerjahn A, Kirchhoff F, Kerr JND, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1(1):31–37PubMedCrossRefPubMedCentralGoogle Scholar
- Olmi S, Livi R, Politi A, Torcini A (2010) Collective oscillations in disordered neural networks. Phys Rev E 81(4):046119CrossRefGoogle Scholar
- Pannasch U, Rouach N (2013) Emerging role for astroglial networks in information processing: from synapse to behavior. Trends Neurosci 36(7):405–417PubMedCrossRefPubMedCentralGoogle Scholar
- Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca\(^{2+}\) oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4(8):803–812PubMedCrossRefPubMedCentralGoogle Scholar
- Pina-Benabou MHD, Srinivas M, Spray DC, Scemes E (2001) Calmodulin kinase pathway mediates the K\(^+\)-induced increase in gap junctional communication between mouse spinal cord astrocytes. J Neurosci 21(17):6635–6643PubMedPubMedCentralCrossRefGoogle Scholar
- Pivneva T, Haas B, Reyes-Haro D, Laube G, Veh R, Nolte C, Skibo G, Kettenmann H (2008) Store-operated Ca\(^{2+}\) entry in astrocytes: different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ. Cell Calcium 43(6):591–601PubMedPubMedCentralCrossRefGoogle Scholar
- Rouach N, Avignone E, Même W, Koulakoff A, Venance L, Blomstrand F, Giaume C (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94(7–8):457–475PubMedCrossRefPubMedCentralGoogle Scholar
- Rouach N, Glowinski J, Giaume C (2000) Activity-dependent neuronal control of gap-junctional communication in astrocytes. J Cell Biol 149(7):1513–1526PubMedPubMedCentralCrossRefGoogle Scholar
- Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907):1551–1555PubMedCrossRefPubMedCentralGoogle Scholar
- Roux L, Benchenane K, Rothstein JD, Bonvento G, Giaume C (2011) Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci U S AGoogle Scholar
- Roxin A, Riecke H, Solla SA (2004) Self-sustained activity in a small-world network of excitable neurons. Phys Rev Lett 92(19):198101PubMedCrossRefPubMedCentralGoogle Scholar
- Sánchez-Gutiérrez D, Tozluoglu M, Barry JD, Pascual A, Mao Y, Escudero LM (2016) Fundamental physical cellular constraints drive self-organization of tissues. EMBO J 35(1):77–88PubMedCrossRefPubMedCentralGoogle Scholar
- Sasaki T, Kuga N, Namiki S, Matsuki N, Ikegaya Y (2011) Locally synchronized astrocytes. Cereb Cortex 21:1889–1900PubMedCrossRefPubMedCentralGoogle Scholar
- Scemes E, Giaume C (2006) Astrocyte calcium waves: What they are and what they do. Glia 54(7):716–725PubMedPubMedCentralCrossRefGoogle Scholar
- Scemes E, Spray DC (2012) Extracellular K\(^+\) and astrocyte signaling via connexin and pannexin channels. Neurochem Res 37(11):2310–2316PubMedPubMedCentralCrossRefGoogle Scholar
- Scemes E, Suadicani SO, Spray DC (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 20(4):1435–1445PubMedPubMedCentralCrossRefGoogle Scholar
- Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte Ca\(^{2+}\) waves trigger responses in microglial cells in brain slices. FASEB J 16(2):255–257PubMedCrossRefPubMedCentralGoogle Scholar
- Sherman A, Smith GD, Dai L, Miura RM (2001) Asymptotic analysis of buffered calcium diffusion near a point source. SIAM J Appl Math 61(5):1816–1838CrossRefGoogle Scholar
- Shuai JW, Jung P (2003) Selection of intracellular calcium patterns in a model with clustered Ca\(^{2+}\) release channels. Phys Rev E 67(3):031905CrossRefGoogle Scholar
- Sirnes S, Kjenseth A, Leithe E, Rivedal E (2009) Interplay between PKC and the MAP kinase pathway in connexin43 phosphorylation and inhibition of gap junction intercellular communication. Biochem Biophys Res Commun 382(1):41–45PubMedCrossRefPubMedCentralGoogle Scholar
- Skupin A, Kettenmann H, Winkler U, Wartenberg M, Sauer H, Tovey SC, Taylor CW, Falcke M (2008) How does intracellular Ca\(^{2+}\) oscillate: by chance or by clock? Biophys J 94:2404–2411PubMedPubMedCentralCrossRefGoogle Scholar
- Sneyd J, Charles AC, Sanderson MJ (1994) A model for the propagation of intracellular calcium waves. Am J Physiol 266(35):C293–C302PubMedCrossRefPubMedCentralGoogle Scholar
- Sneyd J, Keizer J, Sanderson MJ (1995a) Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J 9(14):1463–1472PubMedPubMedCentralCrossRefGoogle Scholar
- Sneyd J, Sherratt J (1997) On the propagation of calcium waves in an inhomogeneous medium. SIAM J Appl Math 57(1):73–94CrossRefGoogle Scholar
- Sneyd J, Wetton BTR, Charles AC, Sanderson MJ (1995b) Intercellular calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. Am J Physiol 268(37):C1537–C1545PubMedCrossRefPubMedCentralGoogle Scholar
- Sneyd J, Wilkins M, Strahonja A, Sanderson MJ (1998) Calcium waves and oscillations driven by an intercellular gradient of inositol (1,4,5)-trisphosphate. Biophys Chem 72(1):101–109PubMedCrossRefPubMedCentralGoogle Scholar
- Stamatakis M, Mantzaris NV (2006) Modeling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks. J Theor Biol 241:649–668PubMedCrossRefPubMedCentralGoogle Scholar
- Suadicani SO, Flores CE, Urban-Maldonado M, Beelitz M, Scemes E (2004) Gap junction channels coordinate the propagation of intercellular Ca\(^{2+}\) signals generated by P2Y receptor activation. Glia 48(3):217–229PubMedPubMedCentralCrossRefGoogle Scholar
- Sul J-Y, Orosz G, Givens RS, Haydon PG (2004) Astrocytic connectivity in the hippocampus. Neuron Glia Biol 1(1):3–11PubMedPubMedCentralCrossRefGoogle Scholar
- Sun W, McConnell E, Pare J-F, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339(6116):197–200PubMedPubMedCentralCrossRefGoogle Scholar
- Tang Y, Othmer H (1994) A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. Biophys J 67:2223–2235PubMedPubMedCentralCrossRefGoogle Scholar
- Tattini L, Olmi S, Torcini A (2012) Coherent periodic activity in excitatory Erdös–Renyi neural networks: The role of network connectivity. Chaos 22(2):023133CrossRefGoogle Scholar
- Theodosis DT, Poulain DA, Oliet SHR (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 88(3):983–1008PubMedCrossRefPubMedCentralGoogle Scholar
- Tian GF, Takano T, Lin JH-C, Wang X, Bekar L, Nedergaard M (2006) Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse brain. Adv Drug Deliv Rev 58(7):773–787PubMedCrossRefPubMedCentralGoogle Scholar
- Ullah G, Jung P, Cornell-Bell AH (2006a) Anti-phase calcium oscillations in astrocytes via inositol (1,4,5)-trisphosphate regeneration. Cell Calcium 39(3):197–208CrossRefGoogle Scholar
- Ullah G, Jung P, Cornell-Bell AH (2006b) Anti-phase calcium oscillations in astrocytes via inositol(1,4,5)-trisphosphate regeneration. Cell Calcium 39(3):197–208CrossRefGoogle Scholar
- Wallach G, Lallouette J, Herzog N, De Pittà M, Ben Jacob E, Berry H, Hanein Y (2014) Glutamate mediated astrocytic filtering of neuronal activity. PLoS Comput Biol 10(12):e1003964PubMedPubMedCentralCrossRefGoogle Scholar
- Wang X, Golomb D, Rinzel J (1995) Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proc Natl Acad Sci U S A 92(12):5577–5581PubMedPubMedCentralCrossRefGoogle Scholar
- Watts DJ (1999) Small worlds: the dynamics of networks between order and randomness, chapter 2. Princeton University Press, Princeton, pp 33–36Google Scholar
- Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43(5):647–661PubMedCrossRefPubMedCentralGoogle Scholar
- Witcher M, Kirov S, Harris K (2007) Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55(1):13–23PubMedCrossRefGoogle Scholar
- Zanette DH (2002) Dynamics of rumor propagation on small-world networks. Phys Rev E 65(4):041908CrossRefGoogle Scholar